Validation, Reliability, and Responsiveness Outcomes of Kinematic Assessment with an RGB-D Camera to Analyze Movement in Subacute and Chronic Low Back Pain
Abstract
:1. Introduction
2. Material and Methods
2.1. Design
2.2. Participants and Intervention
2.3. Setting
2.4. Ethical Considerations
2.5. Motion Capture RGB-D Camera System and Inertial Measurement Unit
2.6. Functional Tests
- (a)
- Modified stairs climbing test (stairs test): Subject had to climb two-steps stairs without assistance by placing one foot on each step (height and depth of each step was 15 × 30 cm) [27].
- (b)
- Bending test: A pen was placed on the floor in front of the subject. The subject was asked to bend forward from the hips and pick up the pen without assistance [27].
- (c)
- Reaching test: Subject facing a shelf placed at patient’s head height +15%. Patient was instructed to place a pen on the shelf without help or assistance [27].
- (d)
- Sock test: Subject had to put on his sock on the dominant foot sitting without help or assistance. The chair had 44 cm sitting height [27].
- (e)
- Lie-to-sit test: Patient had to perform the lying-to-sit transition [28]. Starting from a supine position, the patient was asked to turn on his side and then sit using his arm, while the legs were lowered at the side of the table.
- (f)
- Sit-to-stand test (STS test): A chair with a 44 cm sitting height was used. The patient was instructed to stand up and sit down from the chair without using hands or assistance [29].
- (g)
- TUG test: The patient started seated on a chair (44 cm seating height) and was asked to get up and walk until reaching a cone at a 3 m distance from the chair, turn around it, return it to the chair, and sit down again. Patients walked as fast as possible without running [30].
2.7. Questionnaires
2.8. Measurement Procedure
2.9. Variables
2.10. Data Recording and Processing
2.11. Statistical Analysis
3. Results
4. Discussion
4.1. Six Functional Tests
4.2. TUG Test
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Duthey, B. Priority Medicines for Europe and the World-2013 Update. Background Paper 6-Priority Diseases and Reasons for Inclusion. BP 6.24-Low Back Pain. Vol. 1. WHO Collaborating Centre for Pharmaceutical Policy and Regulation; WHO: Geneva, Switzerland, 2013; pp. 1–29. [Google Scholar]
- van Dongen, J.M.; Ketheswaran, J.; Tordrup, D.; Ostelo, R.W.J.G.; Bertollini, R.; van Tulder, M.W. Health economic evidence gaps and methodological constraints in low back pain and neck pain: Results of the Research Agenda for Health Economic Evaluation (RAHEE) project. Best Pract. Res. Clin. Rheumatol. 2016, 30, 981–993. [Google Scholar] [CrossRef] [PubMed]
- Shmagel, A.; Foley, R.; Ibrahim, H. Epidemiology of Chronic Low Back Pain in US Adults: Data from the 2009–2010 National Health and Nutrition Examination Survey. Arthritis Care Res. (Hoboken) 2016, 68, 1688–1694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, R.; Ning, J.; Chuter, V.H.; Taylor, J.B.; Christophe, D.; Meng, Z.; Xu, Y.; Jiang, L. Exercise alone and exercise combined with education both prevent episodes of low back pain and related absenteeism: Systematic review and network meta-analysis of randomised controlled trials (RCTs) aimed at preventing back pain. Br. J. Sports Med. 2019. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.B.; Goode, A.P.; George, S.Z.; Cook, C.E. Incidence and risk factors for first-time incident low back pain: A systematic review and meta-analysis. Spine J. 2014, 14, 2299–2319. [Google Scholar] [CrossRef] [PubMed]
- Royal Dutch Society for Physical Therapy. KNGF Guideline: Low Back Pain; Royal Dutch Society for Physical Therapy: Amersfoort, The Netherlands, 2013. [Google Scholar]
- Hidalgo, B.; Gilliaux, M.; Poncin, W.; Detrembleur, C. Reliability and validity of a kinematic spine model during active trunk movement in healthy subjects and patients with chronic non-specific low back pain. J. Rehabil. Med. 2012, 44, 756–763. [Google Scholar] [CrossRef] [Green Version]
- Delitto, A.; George, S.Z.; Van Dillen, L.; Whitman, J.M.; Sowa, G.; Shekelle, P.; Denninger, T.R.; Godges, J.J.; Orthopaedic Section of the American Physical Therapy Association. Low Back Pain. J. Orthop. Sports Phys. Ther. 2012, 42, A1–A57. [Google Scholar] [CrossRef] [Green Version]
- Urits, I.; Burshtein, A.; Sharma, M.; Testa, L.; Gold, P.A.; Orhurhu, V.; Viswanath, O.; Jones, M.R.; Sidransky, M.A.; Spektor, B.; et al. Low Back Pain, a Comprehensive Review: Pathophysiology, Diagnosis, and Treatment. Curr. Pain Headache Rep. 2019, 23, 23. [Google Scholar] [CrossRef]
- Papi, E.; Bull, A.M.J.; McGregor, A.H. Is there evidence to use kinematic/kinetic measures clinically in low back pain patients? A systematic review. Clin. Biomech. (Bristol Avon) 2018, 55, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Carlsson, H.; Rasmussen-Barr, E. Clinical screening tests for assessing movement control in non-specific low-back pain. A systematic review of intra- and inter-observer reliability studies. Man. Ther. 2013, 18, 103–110. [Google Scholar] [CrossRef]
- Auvinet, E.; Multon, F.; Meunier, J. New Lower-Limb Gait Asymmetry Indices Based on a Depth Camera. Sensors (Basel) 2015, 15, 4605–4623. [Google Scholar] [CrossRef] [Green Version]
- Clark, R.A.; Pua, Y.-H.; Fortin, K.; Ritchie, C.; Webster, K.E.; Denehy, L.; Bryant, A.L. Validity of the Microsoft Kinect for assessment of postural control. Gait Posture 2012, 36, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Grooten, W.J.A.; Sandberg, L.; Ressman, J.; Diamantoglou, N.; Johansson, E.; Rasmussen-Barr, E. Reliability and validity of a novel Kinect-based software program for measuring posture, balance and side-bending. BMC Musculoskelet Disord. 2018, 19, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, F.-Á.; Merchán-Baeza, J.A.; González-Sánchez, M.; González-Jiménez, J.; Cuesta-Vargas, A.I. Experimental Validation of Depth Cameras for the Parameterization of Functional Balance of Patients in Clinical Tests. Sensors (Basel) 2017, 17, 424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roach, K.E. Measurement of Health Outcomes: Reliability, Validity and Responsiveness. JPO J. Prosthet. Orthot. 2006, 18, P8. [Google Scholar] [CrossRef]
- Clark, R.A.; Mentiplay, B.F.; Hough, E.; Pua, Y.H. Three-dimensional cameras and skeleton pose tracking for physical function assessment: A review of uses, validity, current developments and Kinect alternatives. Gait Posture 2019, 68, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Lebel, K.; Boissy, P.; Hamel, M.; Duval, C. Inertial measures of motion for clinical biomechanics: Comparative assessment of accuracy under controlled conditions - effect of velocity. PLoS ONE 2013, 8, e79945. [Google Scholar] [CrossRef]
- Morgado Ramírez, D.Z.; Strike, S.; Lee, R.Y.W. Measurement of transmission of vibration through the human spine using skin-mounted inertial sensors. Med. Eng. Phys. 2013, 35, 690–695. [Google Scholar] [CrossRef]
- Galna, B.; Barry, G.; Jackson, D.; Mhiripiri, D.; Olivier, P.; Rochester, L. Accuracy of the Microsoft Kinect sensor for measuring movement in people with Parkinson’s disease. Gait Posture 2014, 39, 1062–1068. [Google Scholar] [CrossRef] [Green Version]
- Ye, M.; Yang, C.; Stankovic, V.; Stankovic, L.; Kerr, A. A Depth Camera Motion Analysis Framework for Tele-rehabilitation: Motion Capture and Person-Centric Kinematics Analysis. IEEE J. Sel. Top. Signal Process. 2016, 10, 877–887. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.K.; Desmoulin, G.T.; Khan, A.H.; Park, E.J. A portable inertial sensing-based spinal motion measurement system for low back pain assessment. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 2011, 4737–4740. [Google Scholar]
- van Tulder, M.; Becker, A.; Bekkering, T.; Breen, A.; del Real, M.T.G.; Hutchinson, A.; Koes, B.; Laerum, E.; Malmivaara, A. Chapter 3. European guidelines for the management of acute nonspecific low back pain in primary care. Eur. Spine J. 2006, 15 (Suppl. 2), S169–S191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ligthart, G.J.; Corberand, J.X.; Fournier, C.; Galanaud, P.; Hijmans, W.; Kennes, B.; Müller-Hermelink, H.K.; Steinmann, G.G. Admission criteria for immunogerontological studies in man: The SENIEUR protocol. Mech. Ageing Dev. 1984, 28, 47–55. [Google Scholar] [CrossRef]
- Kask, T.; Kuusik, A. Performance comparison of smartphones and a wearable motion sensor for patient m-assessment. In Proceedings of the 2018 16th Biennial Baltic Electronics Conference (BEC), Tallinn, Estonia, 8–10 October 2018; pp. 1–4. [Google Scholar]
- Galán-Mercant, A.; Barón-López, F.J.; Labajos-Manzanares, M.T.; Cuesta-Vargas, A.I. Reliability and criterion-related validity with a smartphone used in timed-up-and-go test. Biomed. Eng. Online. 2014, 13, 156. [Google Scholar] [CrossRef] [Green Version]
- van Weely, S.F.E.; van Denderen, C.J.; van der Horst-Bruinsma, I.E.; Nurmohamed, M.T.; Dijkmans, B.A.C.; Dekker, J.; Steultjens, M.P.M. Reproducibility of performance measures of physical function based on the BASFI, in ankylosing spondylitis. Rheumatology (Oxford) 2009, 48, 1254–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reicherz, A.; Brach, M.; Cerny, J.; Nicolai, S.; Becker, C.; Lindemann, U. Development of the Lie-to-Sit-to-Stand-to-Walk Transfer (LSSWT) test for early mobilization in older patients in geriatric rehabilitation. Z. Gerontol. Geriatr. 2011, 44, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Kerr, K.; White, J.; Barr, D.; Mollan, R. Standardization and definitions of the sit-stand-sit movement cycle. Gait Posture 1994, 2, 182–190. [Google Scholar] [CrossRef]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar]
- Zerkak, D.; Métivier, J.-C.; Fouquet, B.; Beaudreuil, J. Validation of a French version of Roland-Morris questionnaire in chronic low back pain patients. Ann. Phys. Rehabil. Med. 2013, 56, 613–620. [Google Scholar] [CrossRef] [Green Version]
- Brouwer, S.; Kuijer, W.; Dijkstra, P.U.; Göeken, L.N.H.; Groothoff, J.W.; Geertzen, J.H.B. Reliability and stability of the Roland Morris Disability Questionnaire: Intra class correlation and limits of agreement. Disabil. Rehabil. 2004, 26, 162–165. [Google Scholar] [CrossRef] [Green Version]
- Perneger, T.V.; Combescure, C.; Courvoisier, D.S. General population reference values for the French version of the EuroQol EQ-5D health utility instrument. Value Health 2010, 13, 631–635. [Google Scholar] [CrossRef]
- Versteegh, M.M.; Vermeulen, K.M.; Evers, S.M.A.A.; Wit GA de Prenger, R.; Stolk, E.A. Dutch Tariff for the Five-Level Version of EQ-5D. Value Health 2016, 19, 343–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandek, B.; Ware, J.E.; Aaronson, N.K.; Apolone, G.; Bjorner, J.B.; Brazier, J.E.; Bullinger, M.; Kaasa, S.; Leplege, A.; Prieto, L.; et al. Cross-validation of item selection and scoring for the SF-12 Health Survey in nine countries: Results from the IQOLA Project. International Quality of Life Assessment. J. Clin. Epidemiol. 1998, 51, 1171–1178. [Google Scholar] [CrossRef]
- Kamper, S.J.; Ostelo, R.W.J.G.; Knol, D.L.; Maher, C.G.; de Vet, H.C.W.; Hancock, M.J. Global Perceived Effect scales provided reliable assessments of health transition in people with musculoskeletal disorders, but ratings are strongly influenced by current status. J. Clin. Epidemiol. 2010, 63, 760–766. [Google Scholar] [CrossRef] [PubMed]
- Blanco, J.-L. Development of Scientific Applications with the Mobile Robot Programming Toolkit—The MRPT Reference Book [Internet]. Available online: http://www.mrpt.org/tutorials/the-mrpt-book (accessed on 11 November 2017).
- Shrout, P.E.; Fleiss, J.L. Intraclass correlations: Uses in assessing rater reliability. Psychol. Bull. 1979, 86, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Yébenes Prous, M.; Rodríguez Salvanés, F.; Carmona Ortells, L. Responsiveness of outcome measures. Reumatol. Clin. 2008, 4, 240–247. [Google Scholar] [CrossRef]
- Mentiplay, B.F.; Hasanki, K.; Perraton, L.G.; Pua, Y.-H.; Charlton, P.C.; Clark, R.A. Three-dimensional assessment of squats and drop jumps using the Microsoft Xbox One Kinect: Reliability and validity. J. Sports Sci. 2018, 36, 2202–2209. [Google Scholar] [CrossRef]
- Bohannon, R. Sit-to-stand test for measuring performance of lower extremity muscles. Percept. Mot. Skills 1995, 80, 163–166. [Google Scholar] [CrossRef]
- Matthew, R.P.; Seko, S.; Bailey, J.; Bajcsy, R.; Lotz, J. Estimating Sit-to-Stand Dynamics Using a Single Depth Camera. IEEE J. Biomed. Health Inform. 2019, 23, 2592–2602. [Google Scholar] [CrossRef]
- Leightley, D.; Yap, M.H. Digital Analysis of Sit-to-Stand in Masters Athletes, Healthy Old People, and Young Adults Using a Depth Sensor. Healthcare (Basel) 2018, 6, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aslan Telci, E.; Yagci, N.; Can, T.; Cavlak, U. The impact of chronic low back pain on physical performance, fear avoidance beliefs, and depressive symptoms: A comparative study on Turkish elderly population. Pak. J. Med. Sci. 2013, 29, 560–564. [Google Scholar] [CrossRef] [PubMed]
- Galán-Mercant, A.; Cuesta-Vargas, A.I. Differences in trunk kinematic between frail and nonfrail elderly persons during turn transition based on a smartphone inertial sensor. Biomed. Res. Int. 2013, 2013, 279197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, D.; Pua, Y.-H.; Balakrishnan, S.; Scully, A.; Bower, K.J.; Prakash, K.M.; Tan, E.-K.; Chew, J.-S.; Poh, E.; Tan, S.-B.; et al. Automated analysis of gait and modified timed up and go using the Microsoft Kinect in people with Parkinson’s disease: Associations with physical outcome measures. Med. Biol. Eng. Comput. 2019, 57, 369–377. [Google Scholar] [CrossRef]
- Khoshelham, K.; Elberink, S.O. Accuracy and resolution of Kinect depth data for indoor mapping applications. Sensors (Basel) 2012, 12, 1437–1454. [Google Scholar] [CrossRef] [Green Version]
- Vernon, S.; Paterson, K.; Bower, K.; McGinley, J.; Miller, K.; Pua, Y.-H.; Clark, R.A. Quantifying individual components of the timed up and go using the kinect in people living with stroke. Neurorehabil. Neural. Repair. 2015, 29, 48–53. [Google Scholar] [CrossRef] [Green Version]
- Cuesta-Vargas, A.I.; Galán-Mercant, A.; Williams, J.M. The use of inertial sensors system for human motion analysis. Phys. Ther. Rev. 2010, 15, 462–473. [Google Scholar] [CrossRef] [Green Version]
- Carpentier, J.; Benallegue, M.; Laumond, J.-P. On the centre of mass motion in human walking. Int. J. Autom. Comput. 2017, 14, 542–551. [Google Scholar] [CrossRef]
- Galán-Mercant, A.; Cuesta-Vargas, A.I. Clinical frailty syndrome assessment using inertial sensors embedded in smartphones. Physiol. Meas. 2015, 36, 1929–1942. [Google Scholar] [CrossRef]
Pre- | Post- | |||||
---|---|---|---|---|---|---|
Men (n = 15) | Women (n = 15) | TOTAL (n = 30) | Men (n = 13) | Women (n = 10) | TOTAL (n = 23) | |
Age | 47.73 (12.84) | 44.00 (13.03) | 45.87 (12.85) | 51.00 (10.04) | 44.70 (15.39) | 48.26 (12.73) |
Height | 176.67 (5.64) | 166.47 (8.26) | 171.57 (8.67) | 176.77 (6.07) | 163.90 (8.63) | 171.17 (9.65) |
Weight | 79.13 (7.65) | 65.93 (13.23) | 72.53 (12.56) | 80.77 (6.28) | 67.50 (12.67) | 75.00 (11.51) |
BMI | 25.43 (2.99) | 23.93 (5.27) | 24.68 (4.28) | 25.93 (2.73) | 25.26 (5.15) | 25.64 (3.87) |
RMQ | 13.00 (5.74) | 10.26 (5.95) | 11.63 (5.91) | 11.15 (6.24) | 7.90 (4.95) | 9.73 (5.83) |
EuroQoL-5D | 0.43 (0.24) | 0.54 (0.22) | 0.48 (0.23) | 0.51 (0.20) | 0.62 (0.23) | 0.56 (0.21) |
EuroQoL-VAS | 59.33 (13.74) | 54.46 (17.23) | 56.90 (15.51) | 53.46 (17.70) | 67.30 (13.96) | 59.47 (17.32) |
SF-12 Physical | 36.33 (8.37) | 37.35 (8.10) | 36.84 (8.11) | 37.17 (9.42) | 38.03 (6.47) | 37.54 (8.11) |
SF-12 Mental | 40.27 (7.47) | 39.49 (6.86) | 39.88 (7.06) | 40.63 (5.92) | 42.54 (9.72) | 41.46 (7.66) |
Time(s) | Displacement(°) | Velocity(°/s) | Acceleration(°/s2) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Repetitions Pre | Repetitions Post | IMU | CAM Pre | CAM Post | IMU | CAM Pre | CAM Post | IMU | CAM Pre | CAM Post | IMU | CAM Pre | CAM Post | |
Stairs | 5.23 (1.79) | 4.60 (1.69) | 3.21 (1.10) | 3.21 (1.11) | 3.51 (1.17) | 9.76 (3.42) | 13.71 (10.46) | 20.87 (22.46) | 3.20 (1.16) | 4.32 (2.94) | 6.22 (6.43) | 0.42 (0.09) | 0.75 (0.25) | 0.93 (0.34) |
Bending | 7.23 (3.01) | 7.26 (2.94) | 2.50 (1.67) | 2.51 (1.67) | 2.67 (2.38) | 68.25 (18.81) | 66.51 (26.62) | 74.86 (21.23) | 34.49 (16.87) | 32.03 (16.57) | 38.00 (17.91) | 1.25 (0.31) | 0.98 (0.45) | 1.02 (0.41) |
Reaching | 9.40 (2.97) | 9.13 (2.52) | 1.85 (0.93) | 1.84 (0.92) | 1.83 (0.79) | 6.51 (3.59) | 4.98 (3.38) | 4.89 (4.43) | 4.00 (2.07) | 3.08 (2.24) | 3.07 (2.98) | 0.12 (0.05) | 0.29 (0.25) | 0.32 (0.27) |
Sock | 3.66 (1.26) | 3.91 (1.34) | 3.87 (1.89) | 3.87 (1.90) | 4.35 (2.19) | 16.52 (12.43) | 30.95 (20.61) | 32.92 (19.95) | 4.84 (4.53) | 8.86 (7.65) | 9.15 (7.89) | 0.47 (0.28) | 0.62 (0.51) | 0.58 (0.38) |
LTS | 3.07 (1.07) | 3.63 (0.83) | 4.87 (1.24) | 4.88 (1.24) | 4.45 (1.26) | 91.75 (35.61) | 93.23 (12.86) | 94.26 (45.88) | 20.25 (5.50) | 19.33 (7.15) | 21.77 (9.80) | 1.31 (0.27) | 2.06 (0.88) | 2.32 (1.57) |
STS | 6.26 (1.98) | 6.47 (2.31) | 3.25 (4.05) | 3.25 (4.05) | 3.06 (2.00) | 28.55 (10.31) | 31.87 (14.50) | 32.18 (14.64) | 11.94 (5.39) | 12.58 (5.62) | 11.71 (4.61) | 1.06 (0.26) | 1.19 (0.31) | 1.36 (0.52) |
TUG A-B | 2.14 (0.88) | 2.13 (0.89) | 2.61 (1.25) | 40.67 (14.15) | 31.84 (12.96) | 34.16 (15.40) | 20.87 (9.12) | 15.95 (7.47) | 14.24 (6.61) | 1.17 (0.29) | 1.98 (0.87) | 1.68 (0.52) | ||
TUG B-C | 2.74 (0.90) | 2.77 (0.88) | 2.79 (1.35) | 10.32 (3.38) | 19.89 (7.25) | 17.89 (7.16) | 4.08 (1.78) | 7.87 (4.25) | 7.74 (4.69) | 0.51 (0.16) | 1.29 (0.55) | 1.51 (1.12) | ||
TUG C-D | 2.76 (1.10) | 2.62 (0.87) | 3.28 (1.84) | 20.34 (10.36) | 29.12 (21.47) | 28.09 (30.96) | 7.88 (4.18) | 11.72 (11.36) | 11.11 (18.64) | 0.51 (0.13) | 2.21 (1.39) | 2.37 (1.43) | ||
TUG D-E | 2.69 (0.95) | 2.75 (0.95) | 5.80 (10.01) | 43.45 (12.83) | 37.18 (15.31) | 46.55 (20.90) | 17.92 (7.10) | 15.33 (7.35) | 12.88 (7.38) | 1.09 (0.22) | 1.77 (0.59) | 2.49 (1.78) |
r IMU-CAM | ICC CAM | SEM CAM | AUC CAM | ||
---|---|---|---|---|---|
Stairs | Time(s) | 0.99 | 0.85 (0.75–0.92) | 0.46 | 0.60 (0.37–0.80) |
Displacement (°) | 0.17 | 0.42 (0.20–0.64) | 6.65 | 0.77 (0.55–0.91) | |
Velocity (°/s) | 0.14 | 0.33 (0.11–0.57) | 2.25 | 0.84 (0.63–0.96) | |
Acceleration (°/s2) | 0.11 | 0.46 (0.23–0.66) | 0.19 | 0.71 (0.48–0.87) | |
Bending | Time(s) | 0.99 | 0.93 (0.88–0.96) | 0.46 | 0.84 (0.63–0.96) |
Displacement (°) | 0.58 | 0.75 (0.60–0.86) | 11.08 | 0.55 (0.33–0.76) | |
Velocity (°/s) | 0.80 | 0.83 (0.71–0.91) | 6.38 | 0.78 (0.56–0.92) | |
Acceleration (°/s2) | 0.53 | 0.83 (0.71–0.90) | 0.17 | 0.84 (0.63–0.96) | |
Reaching | Time(s) | 0.99 | 0.76 (0.61–0.86) | 0.51 | 0.71 (0.48–0.88) |
Displacement (°) | 0.20 | 0.37 (0.14–0.59) | 2.83 | 0.53 (0.31–0.74) | |
Velocity (°/s) | 0.35 | 0.58 (0.38–0.75) | 1.50 | 0.58 (0.34–0.76) | |
Acceleration (°/s2) | 0.28 | 0.71 (0.55–0.84) | 0.13 | 0.56 (0.34–0.76) | |
Sock | Time(s) | 0.99 | 0.72 (0.55–0.84) | 1.14 | 0.66 (0.43–0.84) |
Displacement (°) | 0.53 | 0.73 (0.57–0.85) | 12.49 | 0.55 (0.33–0.75) | |
Velocity (°/s) | 0.55 | 0.83 (0.71–0.91) | 2.94 | 0.55 (0.33–0.76) | |
Acceleration (°/s2) | 0.61 | 0.64 (0.45–0.79) | 0.26 | 0.56 (0.33–0.76) | |
LTS | Time(s) | 0.98 | 0.62 (0.41–0.79) | 1.20 | 0.56 (0.32–0.79) |
Displacement (°) | 0.11 | 0.48 (0.25–0.70) | 27.08 | 0.56 (0.32–0.78) | |
Velocity (°/s) | 0.24 | 0.39 (0.15–0.63) | 6.22 | 0.58 (0.34–0.80) | |
Acceleration(°/s2) | 0.09 | 0.16 (−0.06–0.42) | 1.01 | 0.69 (0.44–0.88) | |
STS | Time(s) | 1.00 | 0.92 (0.85–0.95) | 0.41 | 0.85 (0.64–0.96) |
Displacement (°) | 0.59 | 0.73 (0.56–0.85) | 7.67 | 0.64 (0.42–0.85) | |
Velocity (°/s) | 0.73 | 0.75 (0.59–0.86) | 3.07 | 0.72 (0.50–0.89) | |
Acceleration (°/s2) | 0.59 | 0.64 (0.45–0.79) | 0.26 | 0.77 (0.55–0.91) | |
TUG A–B | Time(s) | 0.99 | 0.90 (0.82–0.95) | 0.27 | 0.70 (0.48–0.87) |
Displacement (°) | 0.15 | 0.44 (0.21–0.65) | 10.15 | 0.51 (0.30–0.72) | |
Velocity (°/s) | 0.36 | 0.41 (0.18–0.62) | 5.65 | 0.72 (0.49–0.88) | |
Acceleration (°/s2) | 0.66 | 0.57 (0.36–0.75) | 0.44 | 0.75 (0.53–0.91) | |
TUG B–C | Time(s) | 0.93 | 0.86 (0.77–0.93) | 0.36 | 0.75 (0.53–0.90) |
Displacement (°) | 0.20 | −0.01 (−0.19–0.23) | 21.73 | 0.64 (0.41–0.83) | |
Velocity (°/s) | 0.51 | 0.21 (−0.01–0.46) | 4.67 | 0.75 (0.52–0.90) | |
Acceleration (°/s2) | 0.60 | 0.08 (−0.11–0.33) | 0.60 | 0.51 (0.29–0.72) | |
TUG C–D | Time(s) | 0.95 | 0.80 (0.67–0.89) | 0.49 | 0.74 (0.51–0.90) |
Displacement (°) | 0.06 | 0.49 (0.27–0.69) | 22.92 | 0.63 (0.40–0.81) | |
Velocity (°/s) | −0.12 | 0.54 (0.33–0.73) | 7.35 | 0.55 (0.33–0.75) | |
Acceleration (°/s2) | 0.16 | 0.35 (0.12–0.58) | 1.47 | 0.57 (0.35–0.77) | |
TUG D–E | Time(s) | 0.99 | 0.92 (0.86–0.95) | 0.36 | 0.78 (0.56–0.92) |
Displacement (°) | 0.52 | 0.43 (0.20–0.64) | 12.74 | 0.54 (0.32–0.75) | |
Velocity (°/s) | 0.55 | 0.53 (0.31–0.71) | 4.71 | 0.78 (0.57–0.92) | |
Acceleration (°/s2) | 0.38 | 0.30 (0.08–0.542) | 0.88 | 0.71 (0.48–0.87) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trinidad-Fernández, M.; Beckwée, D.; Cuesta-Vargas, A.; González-Sánchez, M.; Moreno, F.-A.; González-Jiménez, J.; Joos, E.; Vaes, P. Validation, Reliability, and Responsiveness Outcomes of Kinematic Assessment with an RGB-D Camera to Analyze Movement in Subacute and Chronic Low Back Pain. Sensors 2020, 20, 689. https://doi.org/10.3390/s20030689
Trinidad-Fernández M, Beckwée D, Cuesta-Vargas A, González-Sánchez M, Moreno F-A, González-Jiménez J, Joos E, Vaes P. Validation, Reliability, and Responsiveness Outcomes of Kinematic Assessment with an RGB-D Camera to Analyze Movement in Subacute and Chronic Low Back Pain. Sensors. 2020; 20(3):689. https://doi.org/10.3390/s20030689
Chicago/Turabian StyleTrinidad-Fernández, Manuel, David Beckwée, Antonio Cuesta-Vargas, Manuel González-Sánchez, Francisco-Angel Moreno, Javier González-Jiménez, Erika Joos, and Peter Vaes. 2020. "Validation, Reliability, and Responsiveness Outcomes of Kinematic Assessment with an RGB-D Camera to Analyze Movement in Subacute and Chronic Low Back Pain" Sensors 20, no. 3: 689. https://doi.org/10.3390/s20030689
APA StyleTrinidad-Fernández, M., Beckwée, D., Cuesta-Vargas, A., González-Sánchez, M., Moreno, F. -A., González-Jiménez, J., Joos, E., & Vaes, P. (2020). Validation, Reliability, and Responsiveness Outcomes of Kinematic Assessment with an RGB-D Camera to Analyze Movement in Subacute and Chronic Low Back Pain. Sensors, 20(3), 689. https://doi.org/10.3390/s20030689