Modified Blind Equalization Algorithm Based on Cyclostationarity for Contaminated Reference Signal in Airborne PBR
Abstract
:1. Introduction
2. Signal Model and Case-Study Scenario
3. Proposed Blind Equalization Algorithm
3.1. Cyclostationarity
3.2. Modified Blind Equalization Algorithm Based on Cyclostationarity and BP Network
4. Simulation
4.1. Comparison of Spatial-Temporal Clutter Spectrum
4.2. Comparison of Improve Factor (IF)
4.3. Comparison of Target Detection Performance
4.4. False Target Removal
4.5. Algorithm Performance Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Howland, P. Passive radar systems. IET Proc. -Radar, Sonar Navig. 2005, 152, 105–106. [Google Scholar] [CrossRef]
- Colone, F.; Bongioanni, C.; Lombardo, P. Multifrequency integration in FM radio-based passive bistatic radar. Part I: target detection. IEEE Aerosp. Electron. Syst. Mag. 2013, 28, 28–29. [Google Scholar] [CrossRef]
- Colone, F.; Bongioanni, C.; Lombardo, P. Multifrequency integration in FM radio-based passive bistatic radar. Part II: target direction of arrival estimation. IEEE Aerosp. Electron. Syst. Mag. 2013, 28, 40–47. [Google Scholar] [CrossRef]
- Raja, S.A.; Noor, H.A.; Nur, E.A. Analysis on target detection and classification in LTE based passive forward scattering radar. Sensors 2016, 16, 1607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edrich, M.; Schroeder, A.; Meyer, F. Design and performance evaluation of a mature FM/DAB/DVB-T multi-illuminator passive radar system. IET Radar, Sonar Navig. 2014, 8, 114–122. [Google Scholar] [CrossRef]
- Tatiana, M.; Fabiola, C.; Enrico, T. Multi-frequency target detection techniques for DVB-T based passive radar sensors. Sensors 2016, 16, 1594. [Google Scholar]
- Wang, Y.; Bao, Q.; Wang, D. An experimental study of passive bistatic radar using uncooperative radar as a transmitter. IEEE Geosci. Remote. Sens. Lett. 2015, 12, 1868–1872. [Google Scholar] [CrossRef]
- Liu, S.H.; Ma, Y.H.; Huang, Y.M. Sea clutter cancellation for passive radar sensor exploiting multi-channel adaptive filters. IEEE Sens. J. 2019, 19, 982–995. [Google Scholar] [CrossRef]
- Ma, Y.H.; Liu, S.H.; Lu, J. A multi-channel partial-update algorithm for sea clutter suppression in passive bistatic radar. In Proceedings of the IEEE 10th Sensor Array and Multichannel Signal Processing Workshop (SAM), Sheffield, UK, 9–11 July 2018; pp. 252–256. [Google Scholar]
- Feng, Y.; Shan, T.; Liu, S.H.; Tao, R. Interference suppression using joint spatio-temporal domain filtering in passive radar. In Proceedings of the IEEE Radar Conference, Arlington, VA, USA, 27–30 October 2015; pp. 1156–1160. [Google Scholar]
- Brown, B.; Woodbridge, K.; Stove, A. Air target detection using airborne passive bistatic radar. Electron. Lett. 2010, 46, 1396–1397. [Google Scholar] [CrossRef]
- Dawidowicz, B.; Samczynski, P.; Malanowski, M. Detection of moving targets with multichannel airborne passive radar. IEEE Aerosp. Electron. Syst. 2012, 27, 42–49. [Google Scholar] [CrossRef]
- Dawidowicz, B.; Kulpa, K.S.; Malanowski, M. Suppression of the ground clutter in airborne PCL radar using DPCA technique. In Proceedings of the IEEE European Radar Conference, Rome, Italy, 30 September–2 October 2009; pp. 306–309. [Google Scholar]
- Dawidowicz, B.; Kulpa, K.S.; Malanowski, M. DPCA detection of moving targets in airborne passive radar. IEEE Aerosp. Electron. Syst. 2012, 48, 1347–1357. [Google Scholar] [CrossRef]
- Tan, D.K.P.; Lesturgie, M.; Sun, H. Space-time interference analysis and suppression for airborne passive radar using transmissions of opportunity. IET Radar, Sonar Navig. 2014, 8, 142–152. [Google Scholar] [CrossRef]
- Wicks, M.C.; Rangaswamy, R.A.; Hale, T.B. Space-time adaptive processing: a knowledge-based perspective for airborne radar. IEEE Signal Process. Mag. 2006, 23, 51–65. [Google Scholar] [CrossRef]
- Wang, P.; Li, H.; Himed, B. A Bayesian parametric test for multichannel adaptive signal detection in nonhomogeneous environment. IEEE Signal Process. Lett. 2010, 17, 351–354. [Google Scholar] [CrossRef]
- Melvin, W.L. Space-time adaptive radar performance in heterogeneous clutter. IEEE Trans. Aerosp. Electron. Syst. 2000, 36, 621–633. [Google Scholar] [CrossRef]
- Bergin, J.S.; Teixeira, C.M.; Techau, P.M. Improved clutter mitigation performance using knowledge-aided space-time adaptive processing. IEEE Trans. Aerosp. Electron. Syst. 2006, 42, 997–1009. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, Z.; Wang, H. Space-time adaptive processing based on weighted regularized sparse recovery. Prog. Electromagn. Res. B. 2012, 42, 245–262. [Google Scholar] [CrossRef] [Green Version]
- Sun, K.; Meng, H.; Lapierre, P.D. Registration-based compensation using sparse representation in conformal-array STAP. Signal Process. 2011, 91, 2268–2276. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.M.; Samar, R.; Naqvi, S.M. Fractional order constant modulus blind algorithms with application to channel equalization. Electron. Lett. 2014, 50, 1702–1704. [Google Scholar] [CrossRef]
- Colone, F.; Cardinali, R.; Lombardo, P. Space–time constant modulus algorithm for multipath removal on the reference signal exploited by passive bistatic radar. IET radar, sonar Navig. 2009, 3, 253–264. [Google Scholar] [CrossRef]
- Deng, Y.Q.; Wang, J.; Luo, Z. Cascaded suppression method for airborne passive radar with contaminated reference signal. IEEE Access. 2019, 7, 50317–50329. [Google Scholar] [CrossRef]
- Abed-Meraim, K.; Yong, X.; Manton, J.H. Blind source-separation using second-order cyclostationary statistics. IEEE Trans. Signal Process. 2001, 49, 674–701. [Google Scholar] [CrossRef]
- Xiang, Y.; Peng, D.Z.; Indivarie, U. Second-order cyclostationary statistics-based blind source extraction from convolutional mixtures. IEEE Access. 2017, 5, 2011–2019. [Google Scholar] [CrossRef]
- Oğuz, T.; Anthony, G.C.; Jonathon, A.C. New normalized constant modulus algorithms with relaxation. IEEE Signal Process. Lett. 1997, 4, 256–258. [Google Scholar]
Parameter | Value |
---|---|
PRF | 1000 |
Bandwidth | 2.046 MHz |
Wavelength | 0.25 m |
Platform velocity | 125 m/s |
Platform height | 8000 m |
Antenna elements number | 20 |
Pulse number in one CPI | 20 |
Number of multipath | 2 |
Time delay of multipath | [30, 60] |
Doppler of multipath | [80 Hz, −50 Hz] |
Number of Multipath | |||||||||
---|---|---|---|---|---|---|---|---|---|
4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | ||
CNR/dB | 15 | 0.8758 | 0.8746 | 0.8655 | 0.8647 | 0.8633 | 0.8630 | 0.8627 | 0.8615 |
20 | 0.8591 | 0.8566 | 0.8554 | 0.8550 | 0.8477 | 0.8451 | 0.8429 | 0.8418 | |
25 | 0.8168 | 0.8113 | 0.8111 | 0.8118 | 0.8083 | 0.8078 | 0.8072 | 0.8049 | |
30 | 0.7792 | 0.7763 | 0.7734 | 0.7712 | 0.7703 | 0.7696 | 0.7697 | 0.7674 | |
35 | 0.7283 | 0.7253 | 0.7267 | 0.7252 | 0.7217 | 0.7174 | 0.7160 | 0.7144 | |
40 | 0.6581 | 0.6559 | 0.6518 | 0.6470 | 0.6464 | 0.6433 | 0.6418 | 0.6421 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, S.; Wang, J.; Ma, H.; Wang, J. Modified Blind Equalization Algorithm Based on Cyclostationarity for Contaminated Reference Signal in Airborne PBR. Sensors 2020, 20, 788. https://doi.org/10.3390/s20030788
Guo S, Wang J, Ma H, Wang J. Modified Blind Equalization Algorithm Based on Cyclostationarity for Contaminated Reference Signal in Airborne PBR. Sensors. 2020; 20(3):788. https://doi.org/10.3390/s20030788
Chicago/Turabian StyleGuo, Shuai, Jun Wang, Hui Ma, and Jipeng Wang. 2020. "Modified Blind Equalization Algorithm Based on Cyclostationarity for Contaminated Reference Signal in Airborne PBR" Sensors 20, no. 3: 788. https://doi.org/10.3390/s20030788
APA StyleGuo, S., Wang, J., Ma, H., & Wang, J. (2020). Modified Blind Equalization Algorithm Based on Cyclostationarity for Contaminated Reference Signal in Airborne PBR. Sensors, 20(3), 788. https://doi.org/10.3390/s20030788