Single-Shot Structured Light Sensor for 3D Dense and Dynamic Reconstruction
Abstract
:1. Introduction
2. Key Technology and Algorithm
2.1. Design of the Speckle Pattern
Algorithm 1. Generation of a Speckle Pattern |
// pre-define the constraint window |
// set the resolution of speckle pattern: width * height |
For loop = 1:height * width, do |
u: generate a random row coordinate within the range of {1, height} |
v: generate a random column coordinate within the range of {1, width} |
// Judge whether the constraint condition is satisfied or not |
If there are no dots in the constraint window centered at (u,v) |
Put a dot at (u,v) |
Else |
No dots are added |
End If |
End For |
2.2. Epipolar Rectification
2.3. Stereo Calibration
2.4. Stereo Matching Based on an Improved SGM
3. Experiments and Results
3.1. System Calibration
3.2. Performance Evaluation of the Improved SGM Algorithm
3.3. Accuracy Comparison with Other Techniques
3.4. Reconstruction of Surfaces with Rich Textures
3.5. Reconstruction of Dynamic Objects
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Tang, S.J.; Zhang, Y.J.; Li, Y.; Yuan, Z.L.; Wang, Y.K.; Zhang, X.; Li, X.M.; Zhang, Y.T.; Guo, R.Z.; Wang, W.X. Fast and Automatic Reconstruction of Semantically Rich 3D Indoor Maps from Low-quality RGB-D Sequences. Sensors 2019, 19, 533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez, L.; Rodriguez, I.; Rodriguez, N.; Usamentiaga, R.; Garcia, D.F. Robot Guidance Using Machine Vision Techniques in Industrial Environments: A Comparative Review. Sensors 2016, 16, 335. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, H.; Tai, Y.W.; Brown, M.S.; Kweon, I. High Quality Depth Map Upsampling for 3d-tof Cameras. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011. [Google Scholar]
- Bouquet, G.; Thorstensen, J.; Bakke, K.A.H.; Risholm, P. Design Tool for TOF and SL Based 3D Cameras. Opt. Express 2017, 25, 27758–27769. [Google Scholar] [CrossRef] [Green Version]
- Khamis, S.; Fanello, S.; Rhemann, C.; Kowdle, A.; Valentin, J.; Izadi, S. Stereonet: Guided Hierarchical Refinement for Real-time Edge-aware Depth Prediction. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Tippetts, B.; Lee, D.J.; Lillywhite, K.; Archibald, J. Review of Stereo Vision Algorithms and Their Suitability for Resource-limited Systems. J. Real-Time Image Process. 2016, 11, 5–25. [Google Scholar] [CrossRef]
- Tang, S.M.; Zhang, X.; Song, Z.; Song, L.F.; Zeng, H. Robust Pattern Decoding in Shape-coded Structured Light. Opt. Lasers Eng. 2017, 96, 50–62. [Google Scholar] [CrossRef]
- Van der Jeught, S.; Dirckx, J.J. Real-time Structured Light Profilometry: A Review. Opt. Lasers Eng. 2016, 87, 18–31. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, T.; Zhao, Q. A New Model of RGB-D Camera Calibration Based on 3D Control Field. Sensors 2019, 19, 5082. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.; Zhao, K. Structural Parameters Calibration for Binocular Stereo Vision Sensors Using a Double-Sphere Target. Sensors 2016, 16, 1074. [Google Scholar] [CrossRef] [Green Version]
- Salvi, J.; Fernandez, S.; Pribanic, T.; Llado, X. A State of the Art in Structured Light Patterns for Surface Profilometry. Pattern Recognit. 2010, 43, 2666–2680. [Google Scholar] [CrossRef]
- Cheng, X.; Liu, X.J.; Li, Z.W.; Zhong, K.; Han, L.Y.; He, W.T.; Gan, W.B.; Xi, G.Q.; Wang, C.J.; Shi, Y.S. High-Accuracy Globally Consistent Surface Reconstruction Using Fringe Projection Profilometry. Sensors 2019, 19, 668. [Google Scholar] [CrossRef] [Green Version]
- Kovalenko, O.; Golyanik, V.; Malik, J.; Elhayek, A.; Stricker, D. Structure from Articulated Motion: Accurate and Stable Monocular 3D Reconstruction without Training Data. Sensors 2019, 19, 4603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloom, D.M.; Leone, M.A. Grayscale Patterns From Binary Spatial Light Modulators. U.S. Patent No. 9,316,826, 19 April 2016. [Google Scholar]
- Yamazaki, S.; Nukada, A.; Mochimaru, M. Hamming Color Code for Dense and Robust One-shot 3D Scanning. In Proceedings of the British Machine Vision Conference, Dundee, UK, 29 August–2 September 2011. [Google Scholar]
- Lei, Y.; Bengtson, K.R.; Li, L.; Allebach, J.P. Design and Decoding of an M-array Pattern for Low-cost Structured Light 3D Reconstruction Systems. In Proceedings of the 2013 IEEE International Conference on Image Processing, Melbourne, Australia, 15–18 September 2013. [Google Scholar]
- Bleyer, M.; Breiteneder, C. Stereo Matching—State-of-the-Art and Research Challenges. Adv. Top. Comput. Vis. 2013, 143–179. [Google Scholar]
- Hirschmuller, H.; Scharstein, D. Evaluation of Cost Functions for Stereo Matching. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007 . [Google Scholar]
- Zhu, S.; Ma, K.K. A New Diamond Search Algorithm for Fast Block-Matching Motion Estimation. IEEE Trans. Image Process. 2000, 9, 287–290. [Google Scholar] [CrossRef]
- Bleyer, M.; Rhemann, C.; Rother, C. PatchMatch Stereo-Stereo Matching with Slanted Support Windows. In Proceedings of the British Machine Vision Conference, Dundee, UK, 29 August–2 September 2011. [Google Scholar]
- Yang, Q. A Non-Local Cost Aggregation Method for Stereo Matching. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012 . [Google Scholar]
- Yang, Q. Stereo Matching Using Tree Filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 37, 834–846. [Google Scholar] [CrossRef] [PubMed]
- Hirschmuller, H. Stereo Processing by Semiglobal Matching and Mutual Information. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 30, 328–341. [Google Scholar] [CrossRef] [PubMed]
- Keselman, L.; Woodfill, J.I.; Grunnet-Jepsen, A.; Bhowmik, A. Intel RealSense stereoscopic depth cameras. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Fusiello, A.; Trucco, E.; Verri, A. A Compact Algorithm for Rectification of Stereo Pairs. Mach. Vis. Appl. 2000, 12, 16–22. [Google Scholar] [CrossRef]
- Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [Google Scholar] [CrossRef] [Green Version]
- Gu, F.F.; Zhao, H.; Ma, Y.Y.; Bu, P.H.; Zhao, Z.X. Calibration of Stereo Rigs Based on the Backward Projection Process. Meas. Sci. Technol. 2016, 27, 085007. [Google Scholar] [CrossRef]
Parameters Before and After Rectification | |||
---|---|---|---|
Original | Results Using Proposed Method | ||
Left camera | Pixel (H,W) | (1280, 960) | (1280, 960) |
Pixel (fx,fy) | (1146.43, 1146.43) | (1063, 1063) | |
Pixel (u0,v0) | (644.10, 441.84) | (639.31, 438.73) | |
(k1, k2, p1, p2) | (−0.1402, −0.0226, 0.0019, −0.0006) | (0, 0, 0, 0) | |
Right camera | Pixel (H,W) | (1280, 960) | (1280, 960) |
Pixel (fx,fy) | (1148.88, 1148.88) | (1063, 1063) | |
Pixel (u0,v0) | (664.09, 440.03) | (657.20, 438.73) | |
(k1, k2, p1, p2) | (−0.1542, 0.0559, −0.0008, −0.0004) | (0, 0, 0, 0) | |
om | (−0.0095, −0.0025, −0.0019)T | (0, 0, 0)T | |
T (mm) | (49.95, 0.2490, 0.3229)T | (49.97, 0, 0)T |
Measurement Distance (mm) | 400 | 600 | 800 | 1000 | |
---|---|---|---|---|---|
Plane fitting errors (mm) | SGM | 0.645 | 1.905 | 3.617 | 5.532 |
Our method | 0.553 | 1.462 | 2.432 | 3.429 | |
Difference | ↓14.3% | ↓23.3% | ↓32.8% | ↓38.0% | |
Sphere fitting errors (mm) | SGM | 0.669 | 1.654 | 2.724 | 4.988 |
Our method | 0.465 | 1.064 | 1.974 | 2.701 | |
Difference | ↓30.4% | ↓35.7% | ↓27.5% | ↓44.5% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, F.; Song, Z.; Zhao, Z. Single-Shot Structured Light Sensor for 3D Dense and Dynamic Reconstruction. Sensors 2020, 20, 1094. https://doi.org/10.3390/s20041094
Gu F, Song Z, Zhao Z. Single-Shot Structured Light Sensor for 3D Dense and Dynamic Reconstruction. Sensors. 2020; 20(4):1094. https://doi.org/10.3390/s20041094
Chicago/Turabian StyleGu, Feifei, Zhan Song, and Zilong Zhao. 2020. "Single-Shot Structured Light Sensor for 3D Dense and Dynamic Reconstruction" Sensors 20, no. 4: 1094. https://doi.org/10.3390/s20041094
APA StyleGu, F., Song, Z., & Zhao, Z. (2020). Single-Shot Structured Light Sensor for 3D Dense and Dynamic Reconstruction. Sensors, 20(4), 1094. https://doi.org/10.3390/s20041094