Estimation of the Yield and Plant Height of Winter Wheat Using UAV-Based Hyperspectral Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area and Test Design
2.2. Ground Data Acquisition and Processing
2.2.1. Yield Acquisition
2.2.2. Measurement of Plant Height
2.3. Acquisition and Processing of UAV-Based Hyperspectral Remote Sensing Data
2.4. Extraction of Winter-Wheat Plant Height
2.5. Spatial Map of Yield
2.6. Selection of Spectral Indices
2.7. Regression Techniques
2.8. Statistical Analysis
3. Results and Analysis
3.1. Extraction of Winter-Wheat Plant Height
- (1)
- Point coordinate information was obtained using the ArcGIS software, and then the elevations of the soil points were extracted using the ArcTooLbox tool in the ArcGIS software;
- (2)
- The DEM was generated based on the elevations of the soil points using the kriging tools in the ArcGIS software;
- (3)
- The grid calculator tool in the ArcGIS software was used to extract the CSM of winter wheat by subtracting the DEM of the soil points from the DSM;
- (4)
- Obtain the height of winter wheat plants in each plot by using the ROI tool in the ArcGIS software.
3.2. Relationship between Yield and Optimal Spectral Indices, H, and Hcsm
3.3. Using H, Hcsm, and Spectral Indices in Combination with Either Partial Least Squares Regression, Random Forest, or an Artificial Neural Network to Estimate Winter-Wheat Yield
3.4. Map of Predicted Yield
4. Discussion
4.1. Estimation of Winter-Wheat Plant Height
4.2. Yield Estimation Using Spectral Indices, H, and Hcsm
4.3. Yield Estimation Using Partial Least Squares Regression, Random Forest, or an Artificial Neural Network
5. Conclusions
- (1)
- HCSM is strongly correlated with H (R2 = 0.97). This indicates that crop heights can be accurately estimated using remote sensing data, and that such data could therefore resolve the traditional lack of crop height monitoring. Therefore, the results of the present study validate the application of UAV-based hyperspectral remote sensing technology to agricultural management.
- (2)
- The correlations between the ground-measured winter-wheat yield and the spectral indices (SIs), H, and HCSM gradually increased over successive crop growth stages. Additionally, the yield estimation obtained using a combination of the SIs and H, or a combination of the SIs and HCSM, were superior to those obtained using the optimal spectral indices (PBI), H, or HCSM alone.
- (3)
- The PLSR and ANN methods can be used to estimate the yield of winter wheat with a relatively high accuracy, with the PLSR method allowing a slightly higher accuracy. However, the RF method is far less effective for estimating yield than PLSR or ANN.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N. Closing yield gaps through nutrient and water management. Nature 2012, 490, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Tian, Y.; Yao, X.; Zhu, Y.; Cao, W. Predicting grain yield and protein content in wheat by fusing multi-sensor and multi-temporal remote-sensing images. Field Crops Res. 2014, 164, 178–188. [Google Scholar] [CrossRef]
- Yue, J.; Feng, H.; Yang, G.; Li, Z. A comparison of regression techniques for estimation of above-ground winter wheat biomass using near-surface spectroscopy. Remote Sens. 2018, 10, 66. [Google Scholar] [CrossRef] [Green Version]
- Atzberger, C.; Darvishzadeh, R.; Immitzer, M.; Schlerf, M.; Skidmore, A.; le Maire, G. Comparative analysis of different retrieval methods for mapping grassland leaf area index using airborne imaging spectroscopy. Int. J. Appl. Earth Obs. Geoinf. 2015, 43, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Galvão, L.S.; Formaggio, A.R.; Tisot, D.A. Discrimination of sugarcane varieties in Southeastern Brazil with EO-1 Hyperion data. Remote Sens. Environ. 2005, 94, 523–534. [Google Scholar] [CrossRef]
- Du, M.; Noguchi, N. Multi-temporal monitoring of wheat growth through correlation analysis of satellite images, unmanned aerial vehicle images with ground variable. IFAC-Pap. Line 2016, 49, 5–9. [Google Scholar] [CrossRef]
- Wheeler, T.; Von, B.J. Climate change impacts on global food security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef]
- Yu, N.; Li, L.; Schmitz, N.; Tian, L.F.; Greenberg, J.A.; Diers, B.W. Development of methods to improve soybean yield estimation and predict plant maturity with an unmanned aerial vehicle based platform. Remote Sens. Environ. 2016, 187, 91–101. [Google Scholar] [CrossRef]
- Berni, J.; Zarco-Tejada, P.J.; Suarez, L.; Fereres, E. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Trans. Geosci. Remote Sens. 2009, 47, 722–738. [Google Scholar] [CrossRef] [Green Version]
- Zaman-Allah, M.; Vergara, O.; Araus, J.L.; Tarekegne, A.; Magorokosho, C.; Zarco-Tejada, P.J.; Hornero, A.; Alba, A.H.; Das, B.; Craufurd, P.; et al. Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize. Plant Methods 2015, 11, 35. [Google Scholar] [CrossRef] [Green Version]
- Everaerts, J. The use of unmanned aerial vehicles (UAVS) for remote sensing and mapping. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 1187–1192. [Google Scholar]
- Geipel, J.; Link, J.; Claupein, W. Combined spectral and spatial modeling of corn yield based on aerial images and crop surface models acquired with an unmanned aircraft system. Remote Sens. 2014, 6, 10335–10355. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Bareth, G.; Aasen, H.; Bendig, J.; Gnyp, M.L.; Bolten, A.; Jung, A.; Michels, R.; Soukkamaäki, J. Low-weight and UAV-based hyperspectral full-frame cameras for monitoring crops: Spectral comparison with portable spectroradiometer measurements. Photogramm.-Fernerkund.-Geoinf. 2015, 1, 69–79. [Google Scholar] [CrossRef]
- Osborne, S.L.; Schepers, J.S.; Francis, D.D.; Schlemmer, M.R. Crop ecology management & quality-use of spectral radiance to estimate in-season biomass and grain yield in nitrogen- and water-stressed corn. Crop Sci. 2002, 42, 165–171. [Google Scholar] [PubMed]
- Yan, Z.; Xia, Y.; Yongchao, T.; Dongqin, Z.; Yingxue, L.; Weixing, C. Quantitative relationship between leaf nitrogen accumulation and canopy reflectance spectra in rice and wheat. Chin. J. Plan Ecolo. 2006, 30, 983–990. [Google Scholar] [CrossRef]
- Guofu, Z.; Jiangxing, W. Forecasting greenhouse tomato leaves chlorophyll contents based on spectral analysis. J. Agric. Mech. Res. 2008, 11, 33–37. [Google Scholar]
- Xiao, F.; Guoqing, Z.; Shu, Q.; Feng, H.; Zhongjie, M. Estimation models of summer maize LAI based on canopy reflectance spectra. J. Maize Sci. 2008, 16, 86–89. [Google Scholar]
- Serrano, L.; Filella, I.; Penuelas, J. Remote sensing of biomass and yield of winter wheat under different nitrogen supplies. Crop Sci. 2000, 40, 723–731. [Google Scholar] [CrossRef] [Green Version]
- Haiyan, J.; Pengxin, W.; Tailia, Y. Estimations of Chlorophyll and water contents in live leaf of winter wheat with reflectance spectroscopy. Spectrosc. Spectr. Anal. 2007, 27, 514–516. [Google Scholar]
- Thenkabail, P.S.; Smith, R.B.; De, P.E. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens. Environ. 2000, 71, 158–182. [Google Scholar] [CrossRef]
- Ma, B.L.; Dwyer, L.M.; Costa, C.; Cober, E.R.; Morrison, M.J. Early prediction of soybean yield from canopy reflectance measurements. Agron. J. 2001, 93, 1227–1234. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Li, S.; Ren, J.; Gong, P.; Zhang, M.; Wang, L.; Xiao, S.; Jiang, D. Monitoring and management of agriculture with remote sensing. In Advances in Land Remote Sensing: System, Modeling, Inversion and Application; Liang, S., Ed.; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar]
- Gong, Y.; Duan, B.; Fang, S.; Zhu, R.; Wu, X.; Ma, Y.; Peng, Y. Remote estimation of rapeseed yield with unmanned aerial vehicle (UAV) imaging and spectral mixture analysis. Plant Methods 2018, 14, 70. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, J.; Duchemin, B.; Hadria, R.; Watts, C.; Garatuza, J.; Chehbouni, A.; Khabba, S.; Boulet, G.; Palacios, E.; Lahrouni, A. Wheat yield estimation using remote sensing and the STICS model in the semiarid Yaqui valley, Mexico. Agronomie 2004, 24, 295–304. [Google Scholar] [CrossRef] [Green Version]
- Huanjun, L.; Ran, K.; Ustin, S.; Xinle, Z.; Qiang, F.; Lei, S.; Tianyi, S. Study on the prediction of cotton yield within field scale with time series hyperspectral imagery. Spectrosc. Spectr. Anal. 2016, 36, 2585–2589. [Google Scholar]
- Kefauver, S.C.; Vicente, R.; Vergara-Díaz, O.; Fernandez-Gallego, J.A.; Kerfal, S.; Lopez, A.; Melichar, J.P.E.; Serret Molins, M.D.; Araus, J.L. Comparative UAV and field phenotyping to assess yield and nitrogen use efficiency in hybrid and conventional barley. Front. Plant Sci. 2017, 8, 1733. [Google Scholar] [CrossRef]
- Xiaoqing, Z.; Guijun, Y.; Jiangang, L.; Xiaoyan, Z.; Bo, X.; Yanjie, W.; Chunjiang, Z.; Junyi, G. Estimation of soybean breeding yield based on optimization of spatial scale of UAV hyperspectral image. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2017, 33, 110–116. [Google Scholar]
- Uno, Y.; Prasher, S.O.; Lacroix, R.; Goel, P.K.; Karimi, Y.; Viau, A.; Patel, R.M. Artificial neural networks to predict corn yield from compact airborne spectrographic imager data. Comput. Electron. Agric. 2005, 47, 149–161. [Google Scholar] [CrossRef]
- Xujun, Y.; Saikai, K.; Yong, H. Development of citrus yield prediction model based on airborne hyperspectral imaging. Spectrosc. Spectr. Anal. 2010, 30, 1295–1300. [Google Scholar]
- Turner, D.; Lucieer, A.; Wallace, L. Direct georeferencing of ultrahigh-resolution UAV imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2738–2745. [Google Scholar] [CrossRef]
- Wu, C.; Niu, Z.; Tang, Q.; Huang, W. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agric. For. Meteorol. 2008, 148, 1230–1241. [Google Scholar] [CrossRef]
- PeÞuelas, J.; Isla, R.; Filella, I.; Araus, J.L. Visible and near-infrared reflectance assessment of salinity effects on barley. Crop Sci. 1997, 37, 198–202. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Blackburn, G.A. Quantifying chlorophylls and carotenoids at leaf and canopy scales: An evaluation of some hyperspectral approaches. Remote Sens. Environ. 1998, 66, 273–285. [Google Scholar] [CrossRef]
- Peñuelas, J.; Gamon, J.A.; Fredeen, A.L.; Merino, J.; Field, C.B. Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sens. Environ. 1994, 48, 135–146. [Google Scholar] [CrossRef]
- Rama Rao, N.; Garg, P.K.; Ghosh, S.K.; Dadhwal, V.K. Estimation of leaf total chlorophyll and nitrogen concentrations using hyperspectral satellite imagery. J. Agric. Sci. 2008, 146, 65–75. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Roujean, J.L.; Breon, F.M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Vincini, M.; Frazzi, E.; D’Alessio, P. Angular Dependence of Maize and Sugar Beet VIs from Directional CHRIS/Proba Data. Available online: https://www.researchgate.net/profile/Ermes_Frazzi/publication/228413259_Angular_dependence_of_maize_and_sugar_beet_VIs_from_directional_CHRISProba_data/links/0046352d50c18b3fe6000000.pdf (accessed on 3 January 2018).
- Baret, F.; Guyot, G.; Major, D.J. TSAVI: A vegetation index which minimizes soil brightness effects on LAI and APAR estimation. Symp. Remote Sens. Geosci. Remote Sens. Symp. 1989, 3, 1355–1358. [Google Scholar]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Chappelle, E.W.; Kim, M.S.; McMurtrey, J.E. Ratio analysis of reflflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and carotenoids in soybean leaves. Remote Sens. Environ. 1992, 39, 239–247. [Google Scholar] [CrossRef]
- Stamatiadis, S.; Taskos, D.; Tsadilas, C.; Christofifides, C.; Tsadila, E.; Schepers, J.S. Relation of ground-sensor canopy reflflectance to biomass production and grape color in two merlot vineyards. Am. J. Enol. Vitic. 2006, 57, 415–422. [Google Scholar]
- Datt, B. A new reflectance index for remote sensing of chlorophyll content in higher plants: Tests using Eucalyptus leaves. J. Plant Physiol. 1999, 154, 30–36. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y.U. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Merton, R.; Huntington, J. Early Simulation Results of the Aries-1 Satellite Sensor for Multi-Temporal Vegetation Research Derived from Aviris. In Proceedings of the Eighth Annual JPL Airborne Earth Science Workshop, Pasadena, CA, USA, 9–11 February 1999; pp. 1–10. [Google Scholar]
- Zarco-Tejada, P.J.; Berjón, A.; López-Lozano, R.; Miller, J.R.; Martín, P.; Cachorro, V.; González, M.R.; De Frutos, A. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflflectance simulation in a row-structured discontinuous canopy. Remote Sens. Environ. 2005, 99, 271–287. [Google Scholar] [CrossRef]
- Gurgen, A.; Topaloglu, E.; Ustaomer, D.; Yıldız, S.; Ay, N. Prediction of the colorimetric parameters and mass loss of heat-treated bamboo: Comparison of multiple linear regression and artificial neural network method. Color Res. Appl. 2019, 44, 824–833. [Google Scholar] [CrossRef]
- Pelawa, W.L.C.R.; Olive, D.J. Bootstrapping multiple linear regression after variable selection. Stat. Pap. Available online: http://lagrange.math.siu.edu/Olive/ppboottest.pdf (accessed on 11 April 2019).
- Gevrey, M.; Dimopoulos, I.; Lek, S. Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecol. Model. 2003, 160, 249–264. [Google Scholar] [CrossRef]
- Fan, L.; Zhao, J.; Xu, X.; Liang, D.; Yang, G.; Feng, H.; Yang, H.; Wang, Y.; Chen, G.; Wei, P. Hyperspectral-based estimation of leaf nitrogen content in corn using optimal selection of multiple spectral variables. Sensors 2019, 19, 2898. [Google Scholar] [CrossRef] [Green Version]
- Kuangnan, F.; Jianbin, W.; Jianping, Z.; Bangchang, X. A review of technologies on random forests. Stat. Inf. Forum 2011, 26, 32–38. [Google Scholar]
- Shujun, W.; Dongsheng, G. Remote sensing method of forest biomass estimation by artificial neural network models. Ecol. Environ. 2007, 16, 108–111. [Google Scholar]
- Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sens. 2014, 6, 10395–10412. [Google Scholar] [CrossRef] [Green Version]
- Scotford, I.M.; Miller, P.C. Combination of spectral reflectance and ultrasonic sensing to monitor the growth of winter wheat. Biosyst. Eng. 2004, 87, 27–38. [Google Scholar] [CrossRef]
- Tilly, N.; Hoffmeister, D.; Cao, Q.; Huang, S.; Lenz-Wiedemann, V.; Miao, Y.; Bareth, G. Multitemporal crop surface models: Accurate plant height measurement and biomass estimation with terrestrial laser scanning in paddy rice. J. Appl. Remote Sens. 2014, 8, 083671. [Google Scholar] [CrossRef]
- Yue, J.; Feng, H.; Jin, X.; Yuan, H.; Li, Z.; Zhou, C.; Yang, G.; Tian, Q. A comparison of crop parameters estimation using images from UAV-mounted snapshot hyperspectral sensor and high-definition digital camera. Remote Sens. 2018, 10, 1138. [Google Scholar] [CrossRef] [Green Version]
- Atzberger, C.; Guérif, M.; Baret, F.; Werner, W. Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat. Comput. Electron. Agric. 2010, 73, 165–173. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, G.; Wang, J.; Song, X.; Feng, H. Winter wheat biomass estimation based on spectral indices, band depth analysis and partial least squares regression using hyperspectral measurements. Comput. Electron. Agric. 2014, 100, 51–59. [Google Scholar] [CrossRef]
- Mirzaie, M.; Darvishzadeh, R.; Shakiba, A.; Matkan, A.A.; Atzberger, C.; Skidmore, A. Comparative analysis of different uni- and multi-variate methods for estimation of vegetation water content using hyper-spectral measurements. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 1–11. [Google Scholar] [CrossRef]
- Ferencz, C.; Bognár, P.; Lichtenberger, J.; Hamar, D.; Tarcsai, G.; Timár, G.; Molnár, G.; Pásztor, S.; Steinbach, P.; Székely, B.; et al. Crop yield estimation by satellite remote sensing. Int. J. Remote Sens. 2004, 25, 4113–4149. [Google Scholar] [CrossRef]
- Franch, B.; Skakun, S.; Roger, J.C.; Becker-Reshef, I.; Murphy, E.; Justice, C.; Franch, B.; Vermote, E.F.; Skakun, S.; Roger, J.C.; et al. Remote sensing based yield monitoring: Application to winter wheat in United States and Ukraine. Int. J. Appl Earth Obs Geoin. 2019, 76, 112–127. [Google Scholar] [CrossRef]
- Kurtser, P.; Ringdahl, O.; Rotstein, N.; Berenstein, R.; Edan, Y. In-Field Grape Cluster Size Assessment for Vine Yield Estimation Using a Mobile Robot and a Consumer Level RGB-D Camera. IEEE Robot. Autom. Lett. 2020, 5, 2031–2038. [Google Scholar] [CrossRef]
Spectral Index | Equation | Reference |
---|---|---|
MSR | (R800/R760 − 1)/(R800/R670 + 1)1/2 | [33] |
NDVI | (R750 − R706)/(R750 + R706) | [34] |
OSAVI | 1.16 × (R800 − R670)/(R800 + R670 + 0.16) | [35] |
PSND | (R800 − R470)/(R800 + R470) | [36] |
NPCI | (R670 − R460)/(R670 + R460) | [37] |
PBI | R810/R560 | [38] |
TVI | 0.5 × [120(R750 − R550) – 200 × (R670 − R550)] | [39] |
RDVI | (R800 − R670)/(R800 + R670)1/2 | [40] |
SPVI | 0.4 × [3.7(R800 − R670) − 1.2 × |R530 − R670|] | [41] |
SR | R750/R550 | [42] |
TCARI | 3 × [(R700 − R670) − 0.2 × (R700 − R550)(R700/R670)] | [43] |
MCARI | ((R700 − R670) − 0.2 × (R700 − R550))(R700/R670) | [43] |
EVI2 | 2.5 × (R800 − R670)/(R800 + 2.4 × R670 + 1) | [44] |
PSSR | R800/R500 | [36] |
RARS | R760/R500 | [45] |
WDRVI | (0.1 × R800 − R670)/(0.1 × R800 + R670) | [46] |
LCI | (R850 − R710)/(R850 + R670)1/2 | [47] |
PSRI | (R680 − R500)/R750 | [48] |
RVSI | [(R712 + R752)/2] − R732 | [49] |
GI | R554/R677 | [50] |
Growth Stage | Parameter | Linear Regression | ||
---|---|---|---|---|
R2 | RMSE (kg/ha) | NRMSE (%) | ||
Jointing | PBI | 0.21 | 1253.69 | 21.51 |
H | 0.01 | 1404.43 | 24.09 | |
HCSM | 0.05 | 1380.85 | 23.69 | |
Flagging | PBI | 0.44 | 1056.38 | 18.12 |
H | 0.09 | 1344.59 | 23.07 | |
HCSM | 0.22 | 1250.78 | 21.46 | |
Flowering | PBI | 0.63 | 856.61 | 14.70 |
H | 0.13 | 1319.21 | 22.63 | |
HCSM | 0.23 | 1247.67 | 21.41 |
Growth Stage | Parameters | Linear Regression | ||
---|---|---|---|---|
R2 | RMSE (kg/ha) | NRMSE (%) | ||
Jointing | PBI+H | 0.23 | 1243.39 | 21.33 |
PBI+HCSM | 0.23 | 1237.70 | 21.23 | |
Flagging | PBI+H | 0.45 | 1052.30 | 18.05 |
PBI+HCSM | 0.48 | 1023.87 | 17.57 | |
Flowering | PBI+H | 0.66 | 819.66 | 14.06 |
PBI+HCSM | 0.69 | 781.51 | 13.41 |
PLSR | |||||||
---|---|---|---|---|---|---|---|
Growth Stage | Information | Modeling | Verification | ||||
R2 | RMSE (kg/ha) | NRMSE (%) | R2 | RMSE (kg/ha) | NRMSE (%) | ||
Jointing | SIs | 0.31 | 1118.26 | 18.32 | 0.35 | 1415.64 | 26.83 |
SIs+H | 0.32 | 1110.02 | 18.18 | 0.37 | 1364.44 | 25.86 | |
SIs+HCSM | 0.40 | 1049.32 | 17.19 | 0.40 | 1287.33 | 24.40 | |
Flagging | SIs | 0.58 | 878.50 | 14.39 | 0.57 | 1155.72 | 21.91 |
SIs+H | 0.60 | 854.30 | 13.99 | 0.62 | 1102.19 | 20.89 | |
SIs+HCSM | 0.66 | 786.30 | 12.88 | 0.65 | 1069.60 | 20.27 | |
Flowering | SIs | 0.75 | 676.86 | 11.09 | 0.70 | 989.44 | 18.75 |
SIs+H | 0.76 | 659.93 | 10.81 | 0.74 | 891.99 | 16.91 | |
SIs+HCSM | 0.77 | 648.90 | 10.63 | 0.75 | 870.25 | 16.49 |
ANN | |||||||
---|---|---|---|---|---|---|---|
Growth Stage | Information | Modeling | Verification | ||||
R2 | RMSE (kg/ha) | NRMSE (%) | R2 | RMSE (kg/ha) | NRMSE (%) | ||
Jointing | SIs | 0.27 | 1191.73 | 19.52 | 0.34 | 1429.01 | 27.09 |
SIs+H | 0.28 | 1155.38 | 18.97 | 0.35 | 1385.63 | 26.26 | |
SIs+HCSM | 0.35 | 1100.49 | 18.02 | 0.37 | 1347.29 | 25.54 | |
Flagging | SIs | 0.54 | 919.00 | 15.05 | 0.50 | 1197.21 | 22.69 |
SIs+H | 0.58 | 907.63 | 14.87 | 0.52 | 1182.43 | 22.49 | |
SIs+HCSM | 0.63 | 842.73 | 13.80 | 0.56 | 1161.36 | 22.01 | |
Flowering | SIs | 0.71 | 746.56 | 12.23 | 0.64 | 1072.90 | 20.34 |
SIs+H | 0.72 | 728.99 | 11.94 | 0.67 | 1056.03 | 20.02 | |
SIs+HCSM | 0.74 | 695.45 | 11.39 | 0.68 | 1048.66 | 19.88 |
RF | |||||||
---|---|---|---|---|---|---|---|
Growth Stage | Information | Modeling | Verification | ||||
R2 | RMSE (kg/ha) | NRMSE (%) | R2 | RMSE (kg/ha) | NRMSE (%) | ||
Jointing | SIs | 0.08 | 1312.32 | 21.49 | 0.17 | 1569.45 | 29.75 |
SIs+H | 0.13 | 1276.37 | 20.91 | 0.23 | 1464.87 | 27.77 | |
SIs+HCSM | 0.16 | 1241.14 | 20.33 | 0.28 | 1352.07 | 25.63 | |
Flagging | SIs | 0.16 | 1296.39 | 21.23 | 0.41 | 1232.04 | 23.35 |
SIs+H | 0.22 | 1214.64 | 19.89 | 0.46 | 1224.28 | 23.21 | |
SIs+HCSM | 0.27 | 1166.36 | 19.10 | 0.48 | 1211.56 | 22.96 | |
Flowering | SIs | 0.31 | 1148.67 | 18.81 | 0.51 | 1190.47 | 22.56 |
SIs+H | 0.36 | 1090.09 | 17.85 | 0.55 | 1168.01 | 22.14 | |
SIs+HCSM | 0.44 | 1009.82 | 16.54 | 0.59 | 1125.47 | 21.33 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, H.; Feng, H.; Xu, L.; Miao, M.; Yang, G.; Yang, X.; Fan, L. Estimation of the Yield and Plant Height of Winter Wheat Using UAV-Based Hyperspectral Images. Sensors 2020, 20, 1231. https://doi.org/10.3390/s20041231
Tao H, Feng H, Xu L, Miao M, Yang G, Yang X, Fan L. Estimation of the Yield and Plant Height of Winter Wheat Using UAV-Based Hyperspectral Images. Sensors. 2020; 20(4):1231. https://doi.org/10.3390/s20041231
Chicago/Turabian StyleTao, Huilin, Haikuan Feng, Liangji Xu, Mengke Miao, Guijun Yang, Xiaodong Yang, and Lingling Fan. 2020. "Estimation of the Yield and Plant Height of Winter Wheat Using UAV-Based Hyperspectral Images" Sensors 20, no. 4: 1231. https://doi.org/10.3390/s20041231
APA StyleTao, H., Feng, H., Xu, L., Miao, M., Yang, G., Yang, X., & Fan, L. (2020). Estimation of the Yield and Plant Height of Winter Wheat Using UAV-Based Hyperspectral Images. Sensors, 20(4), 1231. https://doi.org/10.3390/s20041231