TAM and MUSIC Approach for Impact-Source Localization under Deformation Conditions
Abstract
:1. Introduction
2. Experiment Setup and Signal Analysis
2.1. Experiment Setup of Epoxy Laminate Plate under Deformation Conditions
2.2. Sensor-Array Signals Influenced by Deformation Conditions
3. TAM-MUSIC Approach
4. Impact-Source-Localization Results under Deformation Conditions
5. Conclusions and Future Works
Author Contributions
Funding
Conflicts of Interest
References
- Sikdar, S.; Kundu, A.; Jurek, M.; Ostachowicz, W. Nondestructive Analysis of Debonds in a Composite Structure under Variable Temperature Conditions. Sensors 2019, 19, 3454. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.; Wei, L. The low-velocity impact damage resistance of the composite structures—A review. Rev. Adv. Mater. Sci. 2015, 40, 127–145. [Google Scholar]
- Yuan, S.F.; Lai, X.S.; Zhao, X.; Xu, X.; Zhang, L. Distributed structural health monitoring system based on smart wireless sensor and multi-agent technology. Smart Mater. Struct. 2006, 15, 1–8. [Google Scholar] [CrossRef]
- He, W.T.; Liu, J.X.; Wang, S.Q.; Xie, D. Low-velocity impact response and post-impact flexural behaviour of composite sandwich structures with corrugated cores. Compos. Struct. 2018, 189, 37–53. [Google Scholar] [CrossRef]
- Yuan, S.F.; Ren, Y.Q.; Qiu, L.; Mei, H.F. A multi-response-based wireless impact monitoring network for aircraft composite structures. IEEE Trans. Ind. Electron. 2016, 63, 7712–7722. [Google Scholar] [CrossRef]
- Tabian, I.; Fu, H.L.; Khodaei, Z.S. A Convolutional Neural Network for Impact Detection and Characterization of Complex Composite Structures. Sensors 2019, 19, 4933. [Google Scholar] [CrossRef] [Green Version]
- Qing, X.L.; Li, W.Z.; Wang, Y.S.; Sun, H. Piezoelectric Transducer-Based Structural Health Monitoring for Aircraft Applications. Sensors 2019, 19, 545. [Google Scholar] [CrossRef]
- Wang, Q.; Yuan, S.F. Baseline-free imaging method based on new PZT sensor arrangements. J. Intel. Mat. Syst. Str. 2009, 20, 1663–1673. [Google Scholar]
- Sevillano, E.; Sun, R.; Perera, R. Damage Detection Based on Power Dissipation Measured with PZT Sensors through the Combination of Electro-Mechanical Impedances and Guided Waves. Sensors 2016, 16, 639. [Google Scholar] [CrossRef] [Green Version]
- Ciampa, F.; Meo, M. A new algorithm for acoustic emission localization and flexural group velocity determination in anisotropic structures. Compos. Part A Appl. Sci. Manuf. 2019, 41, 1777–1786. [Google Scholar] [CrossRef]
- Marchi, L.D.; Marzani, A.; Speciale, N. A passive monitoring technique based on dispersion compensation to locate impacts in plate-like structures. Smart Mater. Struct. 2011, 20, 035021. [Google Scholar] [CrossRef]
- Qiu, L.; Yuan, S.F.; Zhang, X.Y.; Wang, Y. A time reversal focusing based impact imaging method and its evaluation on complex composite structures. Smart Mater. Struct. 2011, 20, 105014. [Google Scholar] [CrossRef]
- Qiu, L.; Bin, L.; Yuan, S.F.; Su, Z.Q. Impact imaging of aircraft composite structure based on a model-independent spatial-wavenumber filter. Ultrasonics 2016, 64, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, P.D. Omni-directional guided wave transducer arrays for the rapid inspection of large areas of plate structures. IEEE Trans. Ultrason. Ferroelectr. 2003, 50, 699–709. [Google Scholar] [CrossRef]
- Schmidt, R.O. Multiple emitter location and signal parameter estimation. IEEE Trans. Antenn Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Shen, Y.; Cui, X.W.; Hu, Y.H. Localization of Multiple Leak Sources Using Acoustic Emission Sensors Based on MUSIC Algorithm and Wavelet Packet Analysis. IEEE Sens. J. 2018, 18, 9812–9820. [Google Scholar] [CrossRef]
- Yang, H.; Lee, Y.J.; Lee, S.K. Impact source localization in plate utilizing multiple signal classification. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2013, 227, 703–713. [Google Scholar] [CrossRef]
- He, J.Z.; Yuan, F.G. Lamb wave-based subwavelength damage imaging using the DORT-MUSIC technique in metallic plates. Struct. Health Monit. 2016, 15, 65–80. [Google Scholar] [CrossRef]
- Yuan, S.F.; Zhong, Y.T.; Qiu, L.; Wang, Z.L. Two-dimensional near-field multiple signal classification algorithm–based impact localization. J. Intell. Mat. Syst. Struct. 2015, 26, 400–413. [Google Scholar] [CrossRef]
- Zhong, Y.T.; Xiang, J.W. A Two-Dimensional Plum-Blossom Sensor Array-Based Multiple Signal Classification Method for Impact Localization in Composite Structures. Comput. Aided Civ. Infrasttuct. 2016, 31, 633–643. [Google Scholar] [CrossRef]
- Zuo, H.; Yang, Z.B.; Xu, C.B.; Tian, S.H.; Chen, S.F. Damage identification for plate-like structures using ultrasonic guided wave based on improved MUSIC method. Compos. Struct. 2018, 203, 164–171. [Google Scholar] [CrossRef]
- Bao, Q.; Yuan, S.F.; Guo, F.Y.; Qiu, L. Transmitter beamforming and weighted image fusion-based multiple signal classification algorithm for corrosion monitoring. Struct. Health Monit. 2019, 18, 621–634. [Google Scholar] [CrossRef]
- Roy, R.; Paulraj, A.; Kailath, T. ESPRIT-a subspace rotation approach to estimation of parameters of cissoids in noise. IEEE Trans. ASSP 1986, 34, 1340–1342. [Google Scholar] [CrossRef]
- Roy, R.; Kailath, T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. ASSP 1989, 37, 984–995. [Google Scholar] [CrossRef] [Green Version]
- El Kassis, C.; Picheral, J.; Fleury, G.; Mokbel, C. Direction of Arrival Estimation using EM-ESPRIT with Nonuniform Arrays. Circuits Syst. Signal Process. 2012, 31, 1787–1807. [Google Scholar] [CrossRef] [Green Version]
- Kung, S.Y.; Arun, K.S.; Rao, D.V.B. State space and SVD based approximation methods for the harmonic retrieval problem. J. Opt. Soc. Am. 1983, 73, 1799–1811. [Google Scholar] [CrossRef]
- Kung, S.Y.; Lo, C.K.; Foka, R. A toeplitz approximation approach to coherent source direction finding. In Proceedings of the ICASSP ′86. IEEE International Conference on Acoustics, Speech, and Signal Processing, Tokyo, Japan, 7–11 April 1986; Volume 11, pp. 193–196. [Google Scholar]
- Rao, B.R.; Arun, K.S. Modle based processing of signals: A state space approach. Rroc. IEEE 1992, 20, 283–309. [Google Scholar]
- Lee, C.S.; Hwang, W.; Park, H.C.; Han, K.S. Failure of carbon/epoxy composite tubes under combined axial and torsional loading 1. Experimental results and prediction of biaxial strength by the use of neural networks. Compos. Sci. Technol. 1999, 59, 1779–1788. [Google Scholar] [CrossRef]
- Labossiere, P.; Turkkan, N. Failure Prediction of Fibre-Reinforced Materials with Neural Networks. J. Reinf. Plast. Compos. 1993, 12, 1270–1280. [Google Scholar] [CrossRef]
- Al-Assaf, Y.; Kadi, H.E. Fatigue life prediction of unidirectional glass fiber/epoxy composite laminae using neural networks. Compos. Struct. 2001, 53, 65–71. [Google Scholar] [CrossRef]
- Pidaparti, R.M.V.; Palakal, M.J. Material model for composites using neural networks. AIAA J. 1993, 31, 1533–1535. [Google Scholar] [CrossRef]
- Aymerich, F.; Serra, M. Prediction of Fatigue Strength of Composite Laminates by Means of Neural Networks. Key Eng. Mater. 1998, 144, 231–242. [Google Scholar] [CrossRef]
- Gazis, D.C. Three dimensional investigation of the propagation of waves in hollow circular cylinders. J. Acoust. Soc. Am. 1959, 31, 568–578. [Google Scholar] [CrossRef]
- Rose, J.L.; Ditri, J.J.; Pilarski, A.; Rajana, K.; Carr, F. A guided wave inspection technique for nuclear steam generator tubing. NDT E Int. 1994, 27, 307–310. [Google Scholar] [CrossRef]
- Adeli, H.; Kim, H. Wavelet-hybrid feedback least mean square algorithm for robust control of structures. J. Struct. Eng. 2004, 130, 129–137. [Google Scholar] [CrossRef]
- Adeli, H.; Kim, H. Wavelet-Based Vibration Control of Smart Buildings and Bridges; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
2D-MUSIC Results | 2D-MUSIC Errors | 2D-MUSIC Computing Time | TAM-MUSIC Results | TAM-MUSIC Errors | TAM-MUSIC Computing Time | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Deformation | |||||||||||
PZTB-1 | 25.9 | 91 | 0.9 | 1 | 1.2247 | 24.0 | 91 | 1.0 | 1 | 0.2903 | |
PZTB-2 | 25.4 | 91 | 0.4 | 1 | 1.2319 | 24.3 | 91 | 0.7 | 1 | 0.2839 | |
PZTB-3 | 25.8 | 91 | 0.8 | 1 | 1.2341 | 23.3 | 91 | 1.7 | 1 | 0.2867 | |
PZTB-4 | 26.5 | 91 | 1.5 | 1 | 1.2316 | 23.3 | 91 | 1.7 | 1 | 0.2930 | |
PZTB-5 | 27.9 | 91 | 2.9 | 1 | 1.2132 | 24.4 | 91 | 0.6 | 1 | 0.2863 | |
PZTB-6 | 27.9 | 91 | 2.9 | 1 | 1.2213 | 25.5 | 91 | 0.5 | 1 | 0.2851 | |
PZTB-7 | 29.9 | 91 | 4.9 | 1 | 1.2160 | 26.7 | 91 | 1.7 | 1 | 0.2962 | |
PZTB-8 | 29.4 | 91 | 4.4 | 1 | 1.2085 | 26.5 | 91 | 1.5 | 1 | 0.3076 | |
PZTB-9 | 31.3 | 91 | 6.3 | 1 | 1.2295 | 24.1 | 91 | 0.9 | 1 | 0.2958 | |
PZTA-1 | 31.8 | 92 | 1.8 | 2 | 1.3641 | 30.9 | 91 | 0.9 | 1 | 0.3158 | |
PZTA-2 | 34.7 | 92 | 4.7 | 2 | 1.3648 | 31.0 | 91 | 1.0 | 1 | 0.3336 | |
PZTA-3 | 33.0 | 92 | 3.0 | 2 | 1.3632 | 29.6 | 91 | 0.4 | 1 | 0.3181 | |
PZTA-4 | 32.5 | 92 | 2.5 | 2 | 1.3595 | 29.3 | 91 | 0.7 | 1 | 0.3256 | |
PZTA-5 | 36.8 | 92 | 6.8 | 2 | 1.3704 | 30.3 | 91 | 0.3 | 1 | 0.3235 | |
PZTA-6 | 36.6 | 92 | 6.6 | 2 | 1.3762 | 30.8 | 91 | 0.8 | 1 | 0.4555 | |
PZTA-7 | 37.4 | 92 | 7.4 | 2 | 1.3664 | 31.4 | 91 | 1.4 | 1 | 0.3305 | |
PZTA-8 | 40.7 | 92 | 10.7 | 2 | 1.3547 | 31.8 | 91 | 1.8 | 1 | 0.3286 | |
PZTA-9 | 44.6 | 92 | 14.6 | 2 | 1.3591 | 31.9 | 91 | 1.9 | 1 | 0.3371 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Zhong, Y.; Xiang, J. TAM and MUSIC Approach for Impact-Source Localization under Deformation Conditions. Sensors 2020, 20, 3151. https://doi.org/10.3390/s20113151
Zhang Z, Zhong Y, Xiang J. TAM and MUSIC Approach for Impact-Source Localization under Deformation Conditions. Sensors. 2020; 20(11):3151. https://doi.org/10.3390/s20113151
Chicago/Turabian StyleZhang, Zhenghao, Yongteng Zhong, and Jiawei Xiang. 2020. "TAM and MUSIC Approach for Impact-Source Localization under Deformation Conditions" Sensors 20, no. 11: 3151. https://doi.org/10.3390/s20113151