Metal Oxide Nanoparticle-Decorated Few Layer Graphene Nanoflake Chemoresistors for the Detection of Aromatic Volatile Organic Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sensing Layer Preparation
2.3. Characterization Techniques
2.4. Vapor Sensing Experimental Setup
3. Results
3.1. Material Characterizations
3.1.1. TEM Characterization
3.1.2. ESEM Characterization
3.2. Vapor Detection
3.2.1. Graphene Sensing Response to Aromatic VOCs
3.2.2. Sensing Response to Aromatic VOCs of Metal Oxide Nanoparticle-Decorated Graphene
Response of Tungsten Oxide Nanoparticle-Decorated Graphene
Response of Tin Oxide Nanoparticle-Decorated Graphene
3.3. Sensitivity to Aromatic VOCs
3.4. Response Time and Recovery Time
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO, Air Pollution and Child Health: Prescribing Clean Air. Available online: http://www.who.int/ceh/publications/air-pollution-child-health/en/ (accessed on 18 March 2020).
- Clément, P.; Llobet, E. Carbon Nanomaterials Functionalized with Macrocyclic Compounds for Sensing Vapors of Aromatic VOCs. In Semiconductor Gas Sensors, 2nd ed.; Woodhead Publishing Series in Electronic and Optical Materials, Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 223–237. [Google Scholar] [CrossRef]
- Mirzaei, A.; Kim, J.-H.; Kim, H.W.; Kim, S.S. Resistive-Based Gas Sensors for Detection of Benzene, Toluene and Xylene (BTX) Gases: A Review. J. Mater. Chem. C 2018, 6, 4342–4370. [Google Scholar] [CrossRef]
- Table AC1—Permissible Exposure Limits for Chemical Contaminants. Available online: https://www.dir.ca.gov/title8/5155table_ac1.html (accessed on 1 April 2020).
- Wu, J.; Feng, S.; Li, Z.; Tao, K.; Chu, J.; Miao, J.; Norford, L.K. Boosted Sensitivity of Graphene Gas Sensor via Nanoporous Thin Film Structures. Sens. Actuator B-Chem. 2018, 255, 1805–1813. [Google Scholar] [CrossRef]
- Bogue, R. Detecting gases with light: A review of optical gas sensor technologies. Sens. Rev. 2015, 35, 133–140. [Google Scholar] [CrossRef]
- Kadir, R.; Yimit, A.; Ablat, H.; Mahmut, M.; Itoh, K. Optical Waveguide BTX Gas Sensor Based on Polyacrylate Resin Thin Film. Environ. Sci. Technol. 2009, 43, 5113–5116. [Google Scholar] [CrossRef] [PubMed]
- Nizamidin, P.; Yimit, A.; Nurulla, I.; Itoh, K. Optical Waveguide BTX Gas Sensor Based on Yttrium-Doped Lithium Iron Phosphate Thin Film. Int. Sch. Res. Not. 2012, 2012. Article ID 606317, 6 pages. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Zhao, T.; Xu, X.; Wang, H.; Miao, C. Determination of BTEX Compounds in Solid–Liquid Mixing Paint Using the Combination of Solid Phase Extraction, Thermal De-sorption and GC-FID. Chromatographia 2010, 71, 1131–1135. [Google Scholar] [CrossRef]
- Yuan, W.; Shi, G. Graphene-Based Gas Sensors. J. Mater. Chem. A 2013, 1, 10078. [Google Scholar] [CrossRef]
- Xu, K.; Fu, C.; Gao, Z.; Wei, F.; Ying, Y.; Xu, C.; Fu, G. Nanomaterial-Based Gas Sensors: A Review. Instrum. Sci. Technol. 2018, 46, 115–145. [Google Scholar] [CrossRef]
- Han, T.; Nag, A.; Mukhopadhyay, S.C.; Xu, Y. Carbon nanotubes and its gas-sensing applications: A review. Sens. Actuator A-Phys. 2019, 291, 107–143. [Google Scholar] [CrossRef]
- Lin, T.; Lv, X.; Hu, Z.; Xu, A.; Feng, C. Semiconductor Metal Oxides as Chemoresistive Sensors for Detecting Volatile Organic Compounds. Sensors 2019, 19, 233. [Google Scholar] [CrossRef] [Green Version]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.L.; Grigorieva, I.V. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Hu, C.; Dai, L. Functionalized Carbon Nanotubes and Graphene-Based Materials for Energy Storage. Chem. Commun. 2016, 52, 14350–14360. [Google Scholar] [CrossRef] [PubMed]
- Singh, E.; Meyyappan, M.; Nalwa, H.S. Flexible Graphene-Based Wearable Gas and Chemical Sensors. ACS Appl. Mater. Interfaces 2017, 9, 34544–34586. [Google Scholar] [CrossRef] [PubMed]
- Yavari, F.; Koratkar, N. Graphene-Based Chemical Sensors. J. Phys. Chem. Lett. 2012, 3, 1746–1753. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, W.; Zhang, P.; Su, Z. Fabrication technologies and sensing applications of graphene-based composite films: Advances and challenges. Biosens. Bioelectron. 2017, 89, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Wrobel, P.S.; Wlodarski, M.D.; Jedrzejewska, A.; Placek, K.M.; Szukiewicz, R.; Kotowicz, S.; Tokarska, K.; Quang, H.T.; Mendes, R.G.; Liu, Z.; et al. A comparative study on simple and practical chemical gas sensors from chemically modified graphene films. Mater. Res. Express 2019, 6, 015607. [Google Scholar] [CrossRef]
- Wang, T.; Huang, D.; Yang, Z.; Xu, S.; He, G.; Li, X.; Hu, N.; Yin, G.; He, D.; Zhang, L. A Review on Graphene-Based Gas/Vapor Sensors with Unique Properties and Potential Applications. Nano-Micro Lett. 2016, 8, 95–119. [Google Scholar] [CrossRef] [Green Version]
- Tian, W.; Liu, X.; Yu, W. Research Progress of Gas Sensor Based on Graphene and Its Derivatives: A Review. Appl. Sci. 2018, 8, 1118. [Google Scholar] [CrossRef] [Green Version]
- Gutés, A.; Hsia, B.; Sussman, A.; Mickelson, W.; Zettl, A.; Carraro, C.; Maboudian, R. Graphene Decoration with Metal Nanoparticles: Towards Easy Integration for Sensing Applications. Nanoscale 2012, 4, 438–440. [Google Scholar] [CrossRef]
- Kamal, Z.-E.-H.; Salahuddin, M.A. Introduction to Wireless Sensor Networks. In Wireless Sensor Networks: Architectures and Protocols; Benhaddou, D., Al-Fuqaha, A., Eds.; Springer: New York, NY, USA, 2015; pp. 3–32. [Google Scholar] [CrossRef]
- Pinnaduwage, L.A.; Gehl, A.C.; Allman, S.L.; Johansson, A.; Boisen, A. Miniature Sensor Suitable for Electronic Nose Applications. Rev. Sci. Instrum. 2007, 78, 055101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.Y.; Kim, Y.; Kim, T.; Eom, T.H.; Kim, S.Y.; Jang, H.W. Chemoresistive materials for electronic nose: Progress, perspectives, and challenges. InfoMat 2019, 1, 289–316. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhao, J.; Du, T.; Zhu, Z.; Zhang, J.; Liu, Q. A gas sensor array for the simultaneous detection of multiple VOCs. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Potyrailo, R.A.; Surman, C.; Nagraj, N.; Burns, A. Materials and Transducers Toward Selective Wireless Gas Sensing. Chem. Rev. 2011, 111, 7315–7354. [Google Scholar] [CrossRef] [Green Version]
- Shi, C.; Ye, H.; Wang, H.; Ioannou, D.E.; Li, Q. Precise gas discrimination with cross-reactive graphene and metal oxide sensor arrays. Appl. Phys. Lett. 2018, 113, 222102. [Google Scholar] [CrossRef]
- Qin, J.; Cao, M.; Li, N.; Hu, C. Graphene-wrapped WO3 nanoparticles with improved performances in electrical conductivity and gas sensing properties. J. Mater. Chem. 2011, 21, 17167–17174. [Google Scholar] [CrossRef]
- Gui, Y.; Zhao, J.; Wang, W.; Tian, J.; Zhao, M. Synthesis of hemispherical WO3/graphene nanocomposite by a microwave-assisted hydrothermal method and the gas-sensing properties to trimethylamine. Mater. Lett. 2015, 155, 4–7. [Google Scholar] [CrossRef]
- Gui, Y.; Liu, Z.; Fang, S.; Tian, J.; Gong, F. Synthesis of flower-like WO3/graphene nanocomposite by microwave-assisted hydrothermal method and the enhanced gas-sensing properties to aniline. J. Mater. Sci-Mater. Electron. 2016, 27, 2890–2895. [Google Scholar] [CrossRef]
- Wu, J.; Wu, Z.; Ding, H.; Wei, Y.; Huang, W.; Yang, X.; Li, Z.; Qiu, L.; Wang, X. Three-Dimensional Graphene Hydrogel Decorated with SnO2 for High-Performance NO2 Sensing with Enhanced Immunity to Humidity. ACS Appl. Mater. Interfaces 2020, 12, 2634–2643. [Google Scholar] [CrossRef]
- Wang, Z.; Jia, Z.; Li, Q.; Zhang, X.; Sun, W.; Sun, J.; Liu, B.; Ha, B. The enhanced NO2 sensing properties of SnO2 nanoparticles/reduced graphene oxide composite. J. Colloid. Interface. Sci. 2019, 537, 228–237. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, T.; Han, T.; Fei, T.; Liu, S.; Lu, G. Oxygen vacancy engineering for enhanced sensing performances: A case of SnO2 nanoparticles-reduced graphene oxide hybrids for ultrasensitive ppb-level room-temperature NO2 sensing. Sens. Actuator B-Chem. 2018, 266, 812–822. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, C.; Han, T.; Zhang, Y.; Liu, S.; Fei, T.; Lu, G.; Zhang, T. High-performance reduced graphene oxide-based room-temperature NO2 sensors: A combined surface modification of SnO2 nanoparticles and nitrogen doping approach. Sens. Actuator B-Chem. 2017, 242, 269–279. [Google Scholar] [CrossRef]
- Tammanoon, N.; Wisitsoraat, A.; Sriprachuabwong, C.; Phokharatkul, D.; Tuantranont, A.; Phanichphant, S.; Liewhiran, C. Ultrasensitive NO2 Sensor Based on Ohmic Metal-Semiconductor Interfaces of Electrolytically Exfoliated Graphene/Flame-Spray-Made SnO2 Nanoparticles Composite Operating at Low Temperatures. ACS Appl. Mater. Interfaces 2015, 7, 24338–24352. [Google Scholar] [CrossRef] [PubMed]
- Bo, Z.; Yuan, M.; Mao, S.; Chen, X.; Yan, J.; Cen, K. Decoration of vertical graphene with tin dioxide nanoparticles for highly sensitive room temperature formaldehyde sensing. Sens. Actuator B-Chem. 2018, 256, 1011–1020. [Google Scholar] [CrossRef]
- Cao, Y.; Li, Y.; Jia, D.; Xie, J. Solid-state synthesis of SnO2-graphene nanocomposite for photocatalysis and formaldehyde gas sensing. RSC Adv. 2014, 4, 46179–46186. [Google Scholar] [CrossRef]
- Jin, L.; Chen, W.; Zhang, H.; Xiao, G.; Yu, C.; Zhou, Q. Characterization of reduced graphene oxide (rGO)-loaded SnO2 nanocomposite and applications in C2H2 gas detection. Appl. Sci. 2017, 7, 19. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, A.; Chang, H.; Xia, B. Room-temperature high-performance acetone gas sensor based on hydrothermal synthesized SnO2-reduced graphene oxide hybrid composite. RSC Adv. 2015, 5, 3016–3022. [Google Scholar] [CrossRef]
- Clément, P.; Korom, S.; Struzzi, C.; Parra, E.J.; Bittencourt, C.; Ballester, P.; Llobet, E. Deep Cavitand Self-Assembled on Au NPs-MWCNT as Highly Sensitive Benzene Sensing Interface. Adv. Funct. Mater. 2015, 25, 4011–4020. [Google Scholar] [CrossRef]
- Clément, P.; Hafaiedh, I.; Parra, E.J.; Thamri, A.; Guillot, J.; Abdelghani, A.; Llobet, E. Iron oxide and oxygen plasma functionalized multi-walled carbon nanotubes for the discrimination of volatile organic compounds. Carbon 2014, 78, 510–520. [Google Scholar] [CrossRef]
- Bohli, N.; Belkilani, M.; Casanova-Chafer, J.; Llobet, E.; Abdelghani, A. Multiwalled carbon nanotube based aromatic volatile organic compound sensor: Sensitivity enhancement through 1-hexadecanethiol functionalization. Beilstein J. Nanotechnol. 2019, 10, 2364–2373. [Google Scholar] [CrossRef]
- Labidi, A.; Jacolin, C.; Bendahan, M.; Abdelghani, A.; Guerin, J.; Aguir, K.; Maaref, M. Impedance spectroscopy on WO3 gas sensor. Sens. Actuator B-Chem. 2005, 106, 713–718. [Google Scholar] [CrossRef]
- Hafaiedh, I.; Helali, S.; Cherif, K.; Abdelghani, A.; Tournier, G. Characterization of Tin Dioxide Film for Chemical Vapors sensor. Mat. Sci. Eng. C. 2008, 28, 584–587. [Google Scholar] [CrossRef]
- Sun, D.; Luo, Y.; Debliquy, M.; Zhang, C. Graphene-enhanced metal oxide gas sensors at room temperature: A review. Beilstein J. Nanotechnol. 2018, 9, 2832–2844. [Google Scholar] [CrossRef] [PubMed]
- Sakai, G.; Matsunaga, N.; Shimanoe, K.; Yamazoe, N. Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor. Sens. Actuator B-Chem. 2001, 80, 125–131. [Google Scholar] [CrossRef]
- Deokar, G.; Casanova-Cháfer, J.; Rajput, N.S.; Aubry, C.; Llobet, E.; Jouiad, M.; Costa, P.M. Wafer-scale few-layer graphene growth on Cu/Ni films for gas sensing applications. Sens. Actuator B-Chem. 2020, 305, 127458. [Google Scholar] [CrossRef]
- Pearce, R.; Iakimov, T.; Andersson, M.; Hultman, L.; Lloyd Spetz, A.; Yakimova, R. Epitaxially grown graphene based gas sensors for ultra sensitive NO2 detection. Sens. Actuator B-Chem. 2011, 155, 451–455. [Google Scholar] [CrossRef] [Green Version]
- Jaaniso, R.; Kahro, T.; Kozlova, J.; Aarik, J.; Aarik, L.; Alles, H.; Floren, A.; Gerst, A.; Kasikov, A.; Niilisk, A.; et al. Temperature induced inversion of oxygen response in CVD graphene on SiO2. Sens. Actuator B-Chem. 2014, 190, 1006–1013. [Google Scholar] [CrossRef] [Green Version]
- Naghdia, S.; Sanchez-Arriagaa, G.; Rheeb, K.Y. Tuning the work function of graphene toward application as anode and cathode. J. Alloy. Compd. 2019, 805, 1117–1134. [Google Scholar] [CrossRef] [Green Version]
- Halek, G.; Baikie, I.D.; Teterycz, H.; Halek, P.; Suchorska, P.; Wiśniewski, K. Work Function Analysis of Gas Sensitive WO3 Layers with Pt Doping. Sens. Actuator B-Chem. 2013, 187, 379–385. [Google Scholar] [CrossRef] [Green Version]
- Schierbaum, K.D.; Weimar, U.; Göpel, W.; Kowalkowski, R. Conductance, Work Function and Catalytic Activity of SnO2-Based Gas Sensors. Sens. Actuator B-Chem. 1991, 3, 205–214. [Google Scholar] [CrossRef]
- Thamri, A.; Baccar, H.; Struzzi, C.; Bittencourt, C.; Abdelghani, A.; Llobet, E. MHDA-functionalized multiwall carbon nanotubes for detecting non-aromatic VOCs. Sci. Rep. 2016, 6, 35130–35142. [Google Scholar] [CrossRef] [PubMed]
- Occupational Safety and Health Administration, Substance Safety Data Sheet, Benzene. Available online: https://www.osha.gov/laws-regs/regulations/standardnumber/1910/1910.1028AppA (accessed on 25 May 2020).
Graphene | WO3/Graphene | SnO2/Graphene | |
---|---|---|---|
Benzene | 19.2 | 22.7 | 25.5 |
Toluene | 91 | 96.9 | 456.4 |
Xylene | 213.6 | 391.2 | 2081.8 |
Temp | Benzene | Toluene | Xylene | Dynamic Range | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|
(°C) | NR | LOD | NR | LOD | NR | LOD | (ppm) | ||
Graphene | RT | 0.56 | 200 | 0.95 | 200 | 4 | 50 | 0.2–11 | This research |
Graphene/WO3 | 250 | 0.96 | 100 | 2 | 100 | 7 | 20 | 0.2–11 | This research |
Graphene/SnO2 | 250 | 1.16 | 100 | 4.25 | 100 | 28 | 20 | 0.2–11 | This research |
Pd-rGO-ZnO | 400 | 460 | 100 * | N/A | N/A | N/A | N/A | 1–5 | [3] |
MWCNT-PEO | RT | N/A | N/A | 0.003 | 55,000 * | N/A | N/A | 72–108 | [3] |
MWCNT-Au-Calixarene | RT | 5 | 0.6 | 0.15 | 100 * | 0.025 | 200 * | 0.02–0.08 | [41] |
MWCNT-FeO | RT | 0.35 | 1400 * | 0.45 | 1000 * | N/A | N/A | 1.52–11.25 | [42] |
MWCNT-Au-HDT | RT | 1.5 | 500 * | 4 | 250 * | N/A | N/A | 0.5–13 | [43] |
MWCNT-Au-MHDA | RT | 0 | - | 0 | - | N/A | N/A | 5–20 | [54] |
Graphene | WO3/Graphene | SnO2/Graphene | |
---|---|---|---|
Benzene | 87 | 275 | 238 |
Toluene | 113 | 164 | 26 |
Xylene | 136 | 178 | 35 |
Graphene | WO3/Graphene | SnO2/Graphene | |
---|---|---|---|
Benzene | 200 | 412 | 242 |
Toluene | 188 | 285 | 148 |
Xylene | 222 | 397 | 278 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Behi, S.; Bohli, N.; Casanova-Cháfer, J.; Llobet, E.; Abdelghani, A. Metal Oxide Nanoparticle-Decorated Few Layer Graphene Nanoflake Chemoresistors for the Detection of Aromatic Volatile Organic Compounds. Sensors 2020, 20, 3413. https://doi.org/10.3390/s20123413
Behi S, Bohli N, Casanova-Cháfer J, Llobet E, Abdelghani A. Metal Oxide Nanoparticle-Decorated Few Layer Graphene Nanoflake Chemoresistors for the Detection of Aromatic Volatile Organic Compounds. Sensors. 2020; 20(12):3413. https://doi.org/10.3390/s20123413
Chicago/Turabian StyleBehi, Syrine, Nadra Bohli, Juan Casanova-Cháfer, Eduard Llobet, and Adnane Abdelghani. 2020. "Metal Oxide Nanoparticle-Decorated Few Layer Graphene Nanoflake Chemoresistors for the Detection of Aromatic Volatile Organic Compounds" Sensors 20, no. 12: 3413. https://doi.org/10.3390/s20123413
APA StyleBehi, S., Bohli, N., Casanova-Cháfer, J., Llobet, E., & Abdelghani, A. (2020). Metal Oxide Nanoparticle-Decorated Few Layer Graphene Nanoflake Chemoresistors for the Detection of Aromatic Volatile Organic Compounds. Sensors, 20(12), 3413. https://doi.org/10.3390/s20123413