Thyroid Nodule Classification for Physician Decision Support Using Machine Learning-Evaluated Geometric and Morphological Features
Abstract
:1. Introduction
Related Work
2. Materials and Methods
2.1. Dataset and Data Augmentation
2.2. Feature Extraction
2.2.1. Geometric Features
- = Inverse of covariance matrix of the shape (ellipse)
- and
2.2.2. Morphological Features
2.2.3. Feature Selection
2.3. Classification
3. Results and Discussion
4. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- InformedHealth.org. How Does the Thyroid Gland Work? Available online: https://www.ncbi.nlm.nih.gov/books/NBK279388/ (accessed on 26 June 2019).
- Thomas, L.S. Diagnostic Ultrasound Imaging: Inside Out; Elsevier Academic Series: New York, NY, USA, 2004; Chapter 1. [Google Scholar]
- Tessler, F.N.; Middleton, W.D.; Grant, E.G.; Hoang, J.K.; Berland, L.L.; Teefey, S.A.; Cronan, J.J.; Beland, M.D.; Desser, T.S.; Frates, M.C.; et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. J. Am. Coll. Radiol. 2017, 14, 587–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwak, J.Y.; Han, K.H.; Yoon, J.H.; Moon, H.J.; Son, E.J.; Park, S.H.; Jung, H.K.; Choi, J.S.; Kim, B.M.; Kim, E.-K. Thyroid Imaging Reporting and Data System for US Features of Nodules: A Step in Establishing Better Stratification of Cancer Risk. Radiology 2011, 260, 892–899. [Google Scholar] [CrossRef] [Green Version]
- Sollini, M.; Cozzi, L.; Chiti, A.; Kirienko, M. Texture analysis and machine learning to characterize suspected thyroid nodules and differentiated thyroid cancer: Where do we stand? Eur. J. Radiol. 2018, 99, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Liu1, J.; Shi, Y. Image Feature Extraction Method Based on Shape Characteristics and Its Application in Medical Image Analysis; Department of Software Institute, Department of Information Engineering, North China University of Water Resources and Electric Power: Zhengzhou, Henan Province, China, 2011. [Google Scholar]
- Riti, Y.F.; Nugroho, H.A.; Wibirama, S.; Windarta, B.; Choridah, L. Feature extraction for lesion margin characteristic classification from CT Scan lungs image. In Proceedings of the 2016 1st International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), Yogyakarta, Indonesia, 23–24 August 2016; pp. 54–58. [Google Scholar]
- Junior, J.R.F.; Oliveira, M.C. Evaluating Margin Sharpness Analysis on Similar Pulmonary Nodule Retrieval. In Proceedings of the 2015 IEEE 28th International Symposium on Computer-Based Medical Systems, Sao Paulo, Brazil, 22–25 June 2015; pp. 60–65. [Google Scholar]
- Hiremath, P.S.; Tegnoor, J.R. Recognition of Follicles in Ultrasound Images of Ovaries Using Geometric Features; Department of Studies and Research in Computer Science, Gulbarga University: Gulbarga, Karnataka, India, 2009. [Google Scholar]
- Huang, Y.L.; Chen, D.R.; Jiang, Y.R.; Kuo, S.J.; Wu, H.K.; Moon, W.K. Computer-Aided Diagnosis Using Morphological Features for Classifying Breast Lesions on Ultrasound; Wiley InterScience: Hoboken, NJ, USA, 2008. [Google Scholar]
- Nugroho, H.A.; Triyani, Y.; Rahmawaty, M.; Ardiyanto, I. Analysis of margin sharpness for breast nodule classification on ultrasound images. In Proceedings of the 2017 9th International Conference on Information Technology and Electrical Engineering (ICITEE), Phuket, Thailand, 12–13 October 2017; pp. 1–5. [Google Scholar]
- Anil, G.; Hegde, A.; Chong, F.H.V. Thyroid nodules: Risk stratification for malignancy with ultrasound and guided biopsy. Cancer Imaging 2011, 11, 209. [Google Scholar] [PubMed]
- Zulfanahri; Nugroho, H.A.; Nugroho, A.; Frannita, E.L.; Ardiyanto, I. Classification of Thyroid Ultrasound Images Based on Shape Features Analysis. In Proceedings of the 2017 Biomedical Engineering International Conference, Yogyakarta, Indonesia, 6–7 November 2017. [Google Scholar]
- Nugroho, H.A.; Frannita, E.L.; Nugroho, A.; Zulfanahri; Ardiyanto, I.; Choridah, L. Classification of thyroid nodules based on analysis of margin characteristic. In Proceedings of the 2017 International Conference on Computer, Control, Informatics and its Applications (IC3INA), Jakarta, Indonesia, 23–26 October 2017; pp. 47–51. [Google Scholar] [CrossRef]
- Chen, J.; You, H. Efficient classification of benign and malignant thyroid tumors based on characteristics of medical ultrasonic images. In Proceedings of the 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi’an, Shanxi, China, 3–5 October 2016; pp. 950–954. [Google Scholar]
- Ding, J.; Cheng, H.; Huang, J.; Zhang, Y.; Ning, C. A novel quantitative measurement for thyroid cancer detection based on elastography. In Proceedings of the 2011 4th International Congress on Image and Signal Processing (CISP), Shanghai, China, 15–17 October 2011; pp. 1801–1804. [Google Scholar]
- Isa, I.S.; Saad, Z.; Omar, S.; Osman, M.; Ahmad, K.; Sakim, H.M. Suitable MLP network activation functions for breast cancer and thyroid disease detection. In Proceedings of the 2010 Second International Conference on Computational Intelligence, Modelling and Simulation (CIMSiM), Bali, Indonesia, 28–30 September 2010; pp. 39–44. [Google Scholar]
- Patrício, M.; Oliveira, C.; Caseiro-Alves, F. Differentiating malignant thyroid nodule with statistical classifiers based on demographic and ultrasound features. In Proceedings of the 2017 IEEE 5th Portuguese Meeting on bioengineering (ENBENG), Coimbra, Portugal, 16–18 February 2017; pp. 1–4. [Google Scholar]
- Pedraza, L.; Vargas, C.; Narváez, F.; Durán, O.; Muñoz, E.; Romero, E. An open-access thyroid ultrasound-image Database. In Proceedings of the Conference: 10th International Symposium on Medical Information Processing and Analysis, Cartagena de Indias, Colombia, 14–16 October 2014. [Google Scholar]
- Song, R.; Zhang, L.; Zhu, C.; Liu, J.; Yang, J.; Zhang, T. Thyroid Nodule Ultrasound Image Classification Through Hybrid Feature Cropping Network. IEEE Access 2020, 8, 64064–64074. [Google Scholar] [CrossRef]
- Chi, J.; Walia, E.; Babyn, P.; Wang, J.; Groot, G.; Eramian, M. Thyroid Nodule Classification in Ultrasound Images by Fine-Tuning Deep Convolutional Neural Network. J. Digit. Imaging 2017, 30, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Koundal, D.; Gupta, S.; Singh, S. Computer aided thyroid nodule detection system using medical ultrasound images. Biomed. Signal Process. Control 2018, 40, 117–130. [Google Scholar] [CrossRef] [Green Version]
- Nanda, S.; Mar, M. Identification of Thyroid Cancerous Nodule using Local Binary Pattern Variants in Ultrasound Images. Int. J. Eng. Trends Technol. 2017, 49, 369–374. [Google Scholar] [CrossRef]
- Mortenson, M.E. Geometric Modeling; John Wiley: New York, NY, USA, 1985; p. 763. [Google Scholar]
- Yang, M.; Kpalma, K.; Ronsin, J. A Survey of Shape Feature Extraction Techniques. Peng Yeng Yin Pattern Recognit. 2008, 15, 43–90. [Google Scholar]
- Sagar, C. Feature selection techniques with R. Data Aspirant, 15 January 2018. [Google Scholar]
- Moltz, J.; Bornemann, L.; Kuhnigk, J.-M.; Dicken, V.; Peitgen, E.; Meier, S.; Bolte, H.; Fabel, M.; Bauknecht, H.; Hittinger, M.; et al. Advanced Segmentation Techniques for Lung Nodules, Liver Metastases, and Enlarged Lymph Nodes in CT Scans. IEEE J. Sel. Topics Signal Process. 2009, 3. [Google Scholar] [CrossRef]
- Kubota, T.; Jerebko, A.K.; Dewan, M.; Salganicoff, M.; Krishnan, A. Segmentation of pulmonary nodules of various densities with morphological approaches and convexity models. Med. Image Anal. 2011, 15, 133–154. [Google Scholar] [CrossRef] [PubMed]
- Borghesi, A.; Scrimieri, A.; Michelini, S.; Calandra, G.; Golemi, S.; Tironi, A.; Maroldi, R. Quantitative CT Analysis for Predicting the Behavior of Part-Solid Nodules with Solid Components Less than 6 mm: Size, Density and Shape Descriptors. Appl. Sci. 2019, 9, 3428. [Google Scholar] [CrossRef] [Green Version]
- Alilou, M.; Beig, N.; Orooji, M.; Rajiah, P.; Velcheti, V.; Rakshit, S.; Reddy, N.; Yang, M.; Jacono, F.; Gilkeson, R.; et al. An integrated segmentation and shape based classification scheme for distinguishing adenocarcinomas from granulomas on lung CT. Med. Phys. 2017, 44. [Google Scholar] [CrossRef] [PubMed]
- Sahu, B.; Dehuri, S.; Jagadev, A. A Study on the Relevance of Feature Selection Methods in Microarray Data. Open Bioinf. J. 2018, 11, 117–139. [Google Scholar] [CrossRef]
- Söderman, C.; Johnsson, A.A.; Vikgren, J.; Norrlund, R.R.; Molnar, D.; Svalkvist, A.; Månsson, L.G.; Båth, M. Evaluation of Accuracy and Precision of Manual Size Measurements in Chest Tomosynthesis using Simulated Pulmonary Nodules. Acad. Radiol. 2015, 22, 496–504. [Google Scholar] [CrossRef] [Green Version]
- Serra, J. Image Analysis and Mathematical Morphology; Academic Press: Cambridge, MA, USA, 1982. [Google Scholar]
- Gierada, D.S.; Politte, D.G.; Zheng, J.; Schechtman, K.B.; Whiting, B.R.; Smith, K.E.; Crabtree, T.; Kreisel, D.; Krupnick, A.S.; Patterson, A.G.; et al. Quantitative Computed Tomography Classification of Lung Nodules: Initial Comparison of 2- and 3-Dimensional Analysis. J. Comput. Assist. Tomogr. 2016, 40, 589–595. [Google Scholar] [CrossRef] [PubMed]
Sr. No. | Features | Type |
---|---|---|
1 | Convex Hull | Geometric Features |
2 | Convexity | |
3 | Solidity | |
4 | Elongation | |
5 | Compactness | |
6 | Rectangularity | |
7 | Orientation | |
8 | Roundness | |
9 | Major Axis Length | |
10 | Minor Axis Length | |
11 | Eccentricity | |
12 | Circular Variance | |
13 | Elliptic Variance | |
14 | Ratio of Major Axis Length to Minor Axis Length | |
15 | Bounding Box | |
16 | Centroid | |
17 | Convex Area | |
18 | Filled Area | |
19 | Convex Perimeter | |
20 | Area | Morphological Features |
21 | Perimeter | |
22 | Aspect Ratio | |
23 | Area Perimeter (AP)Ratio | |
24 | Object Perimeter to Ellipse Perimeter (TEP) Ratio | |
25 | TEP Difference | |
26 | Object Perimeter to Circular Perimeter (TCP) Ratio | |
27 | TCP Difference |
Parameter | Value |
---|---|
Number of Decision Trees | 400 |
Criterion | Entropy |
Bootstrap | True |
Sr. No. | Features | Type |
---|---|---|
1 | Solidity | Geometric Features |
2 | Orientation | |
3 | Roundness | |
4 | Major Axis Length | |
5 | Minor Axis Length | |
6 | Bounding Box | |
7 | Convex Area | |
8 | Area | Morphological Features |
9 | Perimeter | |
10 | Aspect Ratio | |
11 | AP Ratio |
Method | Accuracy (%) | Sensitivity (%) | Specificity (%) |
---|---|---|---|
Global | 70.18 | 48.07 | 92.29 |
Discounted | 61.55 | 31.65 | 91.45 |
G-M | 99.33 | 99.39 | 99.25 |
Method | Accuracy (%) | Sensitivity (%) | Specificity (%) |
---|---|---|---|
MBCNN [20] | 96.13 | 97.18 | - |
FDCNN [21] | 98.29 | 99.10 | 93.90 |
LBPV (SVM) [23] | 94.5 | 97.25 | 94.50 |
G-M (RFC) | 99.33 | 99.39 | 99.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes Ataide, E.J.; Ponugoti, N.; Illanes, A.; Schenke, S.; Kreissl, M.; Friebe, M. Thyroid Nodule Classification for Physician Decision Support Using Machine Learning-Evaluated Geometric and Morphological Features. Sensors 2020, 20, 6110. https://doi.org/10.3390/s20216110
Gomes Ataide EJ, Ponugoti N, Illanes A, Schenke S, Kreissl M, Friebe M. Thyroid Nodule Classification for Physician Decision Support Using Machine Learning-Evaluated Geometric and Morphological Features. Sensors. 2020; 20(21):6110. https://doi.org/10.3390/s20216110
Chicago/Turabian StyleGomes Ataide, Elmer Jeto, Nikhila Ponugoti, Alfredo Illanes, Simone Schenke, Michael Kreissl, and Michael Friebe. 2020. "Thyroid Nodule Classification for Physician Decision Support Using Machine Learning-Evaluated Geometric and Morphological Features" Sensors 20, no. 21: 6110. https://doi.org/10.3390/s20216110