Model-Based Analysis and Regulating Approach of Air-Coupled Transducers with Spurious Resonance
Abstract
:1. Introduction
2. Equivalent Modeling of Air-Coupled Transducers with Spurious Resonance
2.1. Equivalent Model
2.2. Equivalent Parameters Estimation
3. Experiments and Results
3.1. Transducer Configuration and Experiment Setup
3.2. Equivalent Parameters Estimation Results
3.3. Mutual Interference between Adjacent Resonances
3.4. Prestress Effects on the Electrical Impedance and the Vibration Response
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Manthey, W.; Kroemer, N.; Magori, V. Ultrasonic transducers and transducer arrays for applications in air. Meas. Sci. Technol. 1992, 3, 249–261. [Google Scholar] [CrossRef] [Green Version]
- Gan, T.H.; Hutchins, D.A.; Billson, D.R.; Schindel, D.W. The use of broadband acoustic transducers and pulse-compression techniques for air-coupled ultrasonic imaging. Ultrasonics 2001, 39, 181–194. [Google Scholar] [CrossRef]
- O’Sullivan, I.J.; Wright, W.M.D. Ultrasonic measurement of gas flow using electrostatic transducers. Ultrasonics 2002, 40, 407–411. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Arenas, T.E.G. A nondestructive integrity test for membrane filters based on air-coupled ultrasonic spectroscopy. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2003, 50, 676–685. [Google Scholar] [CrossRef] [PubMed]
- Gan, T.H.; Hutchins, D.A.; Green, R.J. A swept frequency multiplication technique for air-coupled ultrasonic NDE. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2004, 51, 1271–1279. [Google Scholar] [CrossRef] [PubMed]
- Namas, T.; Dogruel, M. A Feasible and Accurate Technique for Determining the Time-of-Flight in Ultrasonic Distance Measurements. In Proceedings of the 2008 50th International Symposium ELMAR, Zadar, Croatia, 10–12 September 2008; Volumes 1 and 2, pp. 337–340. [Google Scholar]
- Raine, A.B.; Aslam, N.; Underwood, C.P.; Danaher, S. Development of an Ultrasonic Airflow Measurement Device for Ducted Air. Sensors 2015, 15, 10705–10722. [Google Scholar] [CrossRef]
- Zhenggan, Z.; Dong, W. Progress of Air-coupled Ultrasonic Non-destructive Testing Technology. Chin. J. Mech. Eng. 2008, 44, 10–14. [Google Scholar] [CrossRef]
- Sarkady, A.A.; Neustadt, H.M.; Chaskelis, H.H. Estimating Radiation Conductance of a Thickness-Drive Transducer from Electrical Driving-Point Admittance Measurements. J. Acoust. Soc. Am. 1991, 89, 917–926. [Google Scholar] [CrossRef]
- Hayward, G.; Gachagan, A. An evaluation of 1-3 connectivity composite transducers for air-coupled ultrasonic applications. J. Acoust. Soc. Am. 1996, 99, 2148–2157. [Google Scholar] [CrossRef]
- Cheng, L.C.; Kang, Y.C.; Chen, C.L. A Resonance-Frequency-Tracing Method for a Current-Fed Piezoelectric Transducer. IEEE Trans. Ind. Electron. 2014, 61, 6031–6040. [Google Scholar] [CrossRef]
- Redwood, M. Coupling between Two Modes of Vibration in a Piezoelectric Resonator. J. Acoust. Soc. Am. 1965, 38, 576–582. [Google Scholar] [CrossRef]
- Kim, J.; Grisso, B.L.; Kim, J.K.; Ha, D.S.; Inman, D.J. Electrical Modeling of piezoelectric ceramics for analysis and evaluation of sensory systems. In Proceedings of the 2008 IEEE Sensors Applications Symposium, Atlanta, GA, USA, 12–14 February 2008; pp. 122–127. [Google Scholar] [CrossRef]
- Mousavi, S.F.; Hashemabadi, S.H.; Moghaddam, H.A. Design, simulation, fabrication and testing of ultrasonic gas flowmeter transducer (sensor). Sens. Rev. 2019, 39, 277–287. [Google Scholar] [CrossRef]
- Peng, X.; Zhao, N.; Xu, C.; Hu, L.; Fu, X. Frequency-dependent equivalent modelling of broadband air-coupled transducers. Meas. Sci. Technol. 2019, 31. [Google Scholar] [CrossRef]
- Hammarstrom, B.; Evander, M.; Wahlstrom, J.; Nilsson, J. Frequency tracking in acoustic trapping for improved performance stability and system surveillance. Lab Chip 2014, 14, 1005–1013. [Google Scholar] [CrossRef] [PubMed]
- Coutard, F.; Tisserand, E.; Schweitzer, P. The temperature influence on the piezoelectric transducer noise, measurements and modeling. In Proceedings of the 2005 IEEE Ultrasonics Symposium, Rotterdam, The Netherlands, 18–21 September 2005; Volumes 1–4, pp. 1652–1655. [Google Scholar] [CrossRef]
- Parr, A.C.S.; O’Leary, R.L.; Hayward, G. Improving the thermal stability of 1–3 piezoelectric composite transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 550–563. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, P.; Hyslop, J.; Hayward, G. Analysis of spurious resonances in single and multi-element piezocomposite ultrasonic transducers. In Proceedings of the 2003 IEEE Ultrasonics Symposium Proceedings, Honolulu, HI, USA, 5–8 October 2003; Volumes 1 and 2, pp. 1650–1653. [Google Scholar] [CrossRef]
- Kluk, P.; Milewski, A. Piezoceramic Transducers Selection Method for High Power Ultrasonic Devices. Acta Phys. Pol. A 2015, 127, 719–722. [Google Scholar] [CrossRef]
- Solal, M.; Chen, L.; Gratier, J. Measurement and FEM/BEM Simulation of Transverse Effects in SAW Resonators on Lithium Tantalate. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 2404–2413. [Google Scholar] [CrossRef]
- Zaitsev, B.D.; Shikhabudinov, A.M.; Borodina, I.A.; Teplykh, A.A.; Kuznetsova, I.E. Composite lateral electric field excited piezoelectric resonator. Ultrasonics 2017, 73, 125–129. [Google Scholar] [CrossRef]
- Zou, J.; Liu, J.S.; Tang, G.B. Transverse Spurious Mode Compensation for AlN Lamb Wave Resonators. IEEE Access 2019, 7, 67059–67067. [Google Scholar] [CrossRef]
- Kuang, Y.; Jin, Y.; Cochran, S.; Huang, Z. Resonance tracking and vibration stablilization for high power ultrasonic transducers. Ultrasonics 2014, 54, 187–194. [Google Scholar] [CrossRef]
- Aghmasheh, R.; Rashtchi, V.; Rahimpour, E. Gray Box Modeling of Power Transformer Windings for Transient Studies. IEEE Trans. Power Syst. 2017, 32, 2350–2359. [Google Scholar] [CrossRef]
- Desilets, C.S.; Fraser, J.D.; Kino, G.S. The Design of Efficient Broad-Band Piezoelectric Transducers. IEEE Trans. Sonics. Ultrason. 1978, 25, 115–125. [Google Scholar] [CrossRef]
Calculated Values | Estimated Values by GA | Percentage Change (%) | |
---|---|---|---|
R1 | 825.9 Ω | 997.9 Ω | 20.82 |
L1 | 26.29 mH | 19.28 mH | −26.65 |
C1 | 34.34 pF | 46.18 pF | 34.48 |
R2 | 436.9 Ω | 529.6 Ω | 21.23 |
L2 | 2.575 mH | 8.948 mH | 247.5 |
C2 | 308.7 pF | 88.34 pF | −71.39 |
R3 | 341.4 Ω | 287.0 Ω | −15.92 |
L3 | 4.347 mH | 5.046 mH | 16.08 |
C3 | 146.4 pF | 125.7 pF | −14.11 |
C0 | 972.9 pF | 501.1 pF | −48.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, X.; Hu, L.; Liu, W.; Fu, X. Model-Based Analysis and Regulating Approach of Air-Coupled Transducers with Spurious Resonance. Sensors 2020, 20, 6184. https://doi.org/10.3390/s20216184
Peng X, Hu L, Liu W, Fu X. Model-Based Analysis and Regulating Approach of Air-Coupled Transducers with Spurious Resonance. Sensors. 2020; 20(21):6184. https://doi.org/10.3390/s20216184
Chicago/Turabian StylePeng, Xiangxiang, Liang Hu, Weiting Liu, and Xin Fu. 2020. "Model-Based Analysis and Regulating Approach of Air-Coupled Transducers with Spurious Resonance" Sensors 20, no. 21: 6184. https://doi.org/10.3390/s20216184
APA StylePeng, X., Hu, L., Liu, W., & Fu, X. (2020). Model-Based Analysis and Regulating Approach of Air-Coupled Transducers with Spurious Resonance. Sensors, 20(21), 6184. https://doi.org/10.3390/s20216184