Colocalized Sensing and Intelligent Computing in Micro-Sensors
Abstract
:1. Introduction
1.1. Motivation
- Take advantage of the large amount of data generated by the sensors without overwhelming the digital processors in the systems, i.e., enabling modularity.
- Be power- and size-efficient, cutting some sources of energy loss in this computing architecture, such as analog-to-digital converters (ADC) and memory buses.
1.2. Literature Review
1.3. Contribution and Paper Organization
- This paper presents an RC scheme using a sensory element showing a demonstration of colocalized sensing and computing, enabling full edge computing.
- This paper modifies the RC scheme to reduce the need for digital components. Specifically, this paper presents an approach to eliminate the need for input time multiplexing, thus reducing the need for a digital signal processor to produce the reservoir input.
- This paper demonstrates further ability to reduce the computational costs of analog RC systems by reducing the virtual node probing rates, thus requiring less expensive sampling circuits at the reservoir output.
- This paper experimentally tests the use of MEMS RCs in a noisy environment.
2. Materials and Methods
2.1. Reservoir Computing
2.2. Micro-Electro-Mechanical-System Dynamics
2.3. MEMS Reservoir Computing
2.4. Experimental Procedure
Algorithm 1 Interface with MEMS device |
1: Input N, θ 2: Input Vb 3: Input Ts = θ/100 4: Generate w = rand[N,1] 5: Perform thresholding on w to change to binary mask 6: for i = 1,2,...,T do 7: for j = 1,2,...,θ do 8: Generate and Maintain J = w[j]∗Vb using data acquisition system 9: for k = 1,2,...,100 do 10: Acquire MEMS velocity from vibrometer 11: Acquire shaker velocity from shaker controller 12: Store into array Array 13: Store into array Array 14: Wait Ts 15: end for 16: end for 17: end for |
Algorithm 2 Postprocessing |
1: Compute MEMS relative velocity array Array = Array − Array 2: Generate Expected Output array of rectangle classifier YR of length T 3: Generate Expected Output array of triangle classifier YT of length T 4: Initialize X 5: Input δ 6: Apply low-pass filter to Array 7: Compute zArray by integrating Array 8: Shift zArray by δ/Ts elements 9: Downsample with sample rate θ: zArray → zArrayDownSampled 10: for i = 1,2,...,T do 11: Fill X[i,ALL] = ith chunk of N elements of zArrayDownSampled 12: end for 13: Input TrainSamples 14: Generate XTrain = X[1 : TrainSamples,ALL] 15: Generate YR,Train = YR[1 : TrainSamples] 16: Generate YT,Train = YT [1 : TrainSamples] 17: Generate XTest = X[TrainSamples + 1 : T,ALL] 18: Generate YR,Test = YR[TrainSamples + 1 : T] 19: Generate YT,Test = YT [TrainSamples + 1 : T] 20: Generate trained weight of rectangle classifier WoR= ∗ 21: Generate test set results of rectangle classifier = XTestWoR 22: Generate trained weight of triangle classifier WoT = ∗ 23: Generate test set results = XTestWoT 24: Compute classification accuracy Success Rat |
3. Results
3.1. MEMS Reservoir Computing
3.2. MEMS Reservoir Sensing and Computing Unit
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cao, J.; Song, C.; Song, S.; Peng, S.; Wang, D.; Shao, Y.; Xiao, F. Front vehicle detection algorithm for smart car based on improved SSD model. Sensors 2020, 20, 4646. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wu, C.; Xue, J.; Chen, Z. A Method of Personalized Driving Decision for Smart Car Based on Deep Reinforcement Learning. Information 2020, 11, 295. [Google Scholar] [CrossRef]
- Ding, J.; Wang, Y. A WiFi-based Smart Home Fall Detection System using Recurrent Neural Network. IEEE Trans. Consum. Electron. 2020. [Google Scholar] [CrossRef]
- Lin, Y.H. A Parallel Evolutionary Computing-Embodied Artificial Neural Network Applied to Non-Intrusive Load Monitoring for Demand-Side Management in a Smart Home: Towards Deep Learning. Sensors 2020, 20, 1649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, W.W.; Xu, S.; Wang, T.; Zhang, S.; Nugent, C. Radial Basis Function Neural Network with Localized Stochastic-Sensitive Autoencoder for Home-Based Activity Recognition. Sensors 2020, 20, 1479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashry, S.; Ogawa, T.; Gomaa, W. CHARM-Deep: Continuous Human Activity Recognition Model Based on Deep Neural Network using IMU Sensors of Smartwatch. IEEE Sens. J. 2020, 20, 8757–8770. [Google Scholar] [CrossRef]
- Sultana, M.; Al-Jefri, M.; Lee, J. Using Machine Learning and Smartphone and Smartwatch Data to Detect Emotional States and Transitions: Exploratory Study. JMIR mHealth uHealth 2020, 8, e17818. [Google Scholar] [CrossRef]
- Shen, S.; Gu, K.; Chen, X.R.; Lv, C.X.; Wang, R.C. Gesture Recognition Through sEMG with Wearable Device Based on Deep Learning. Mob. Netw. Appl. 2020. [Google Scholar] [CrossRef]
- Bartlett, M.D.; Markvicka, E.J.; Majidi, C. Rapid fabrication of soft, multilayered electronics for wearable biomonitoring. Adv. Funct. Mater. 2016, 26, 8496–8504. [Google Scholar] [CrossRef]
- Markvicka, E.; Wang, G.; Lee, Y.C.; Laput, G.; Majidi, C.; Yao, L. ElectroDermis: Fully Untethered, Stretchable, and Highly-Customizable Electronic Bandages. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019. [Google Scholar] [CrossRef]
- Waldrop, M.M. The chips are down for Moore’s law. Nat. News 2016, 530, 144. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.; Dustdar, S. The promise of edge computing. Computer 2016, 49, 78–81. [Google Scholar] [CrossRef]
- Mead, C. Neuromorphic electronic systems. Proc. IEEE 1990, 78, 1629–1636. [Google Scholar] [CrossRef] [Green Version]
- Schuman, C.D.; Potok, T.E.; Patton, R.M.; Birdwell, J.D.; Dean, M.E.; Rose, G.S.; Plank, J.S. A survey of neuromorphic computing and neural networks in hardware. arXiv 2017, arXiv:1705.06963. [Google Scholar]
- Maass, W.; Natschläger, T.; Markram, A.H. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput. 2002, 14, 2531–2560. [Google Scholar] [CrossRef]
- Jaeger, H. The “echo state” approach to analysing and training recurrent neural networks-with an erratum note. Ger. Natl. Res. Cent. Inf. Technol. GMD Tech. Rep. 2001, 148, 13. [Google Scholar]
- Snyder, D.; Goudarzi, A.; Teuscher, C. Computational capabilities of random automata networks for reservoir computing. Phys. Rev. E 2013, 87, 042808. [Google Scholar] [CrossRef] [Green Version]
- Fujii, K.; Nakajima, K. Harnessing disordered-ensemble quantum dynamics for machine learning. Phys. Rev. Appl. 2017, 8, 024030. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, K.; Fujii, K.; Negoro, M.; Mitarai, K.; Kitagawa, M. Boosting computational power through spatial multiplexing in quantum reservoir computing. Phys. Rev. Appl. 2019, 11, 034021. [Google Scholar] [CrossRef] [Green Version]
- Kanao, T.; Suto, H.; Mizushima, K.; Goto, H.; Tanamoto, T.; Nagasawa, T. Reservoir Computing on Spin-Torque Oscillator Array. Phys. Rev. Appl. 2019, 12, 024052. [Google Scholar] [CrossRef] [Green Version]
- Konkoli, Z. Advances in Unconventional Computing; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Appeltant, L.; Soriano, M.C.; Sande, G.V.D.; Danckaert, J.; Massar, S.; Dambre, J.; Schrauwen, B.; Mirasso, C.R.; Fischer, A.I. Information processing using a single dynamical node as complex system. Nat. Commun. 2011, 2, 468. [Google Scholar] [CrossRef] [Green Version]
- Hart, J.D.; Larger, L.; Murphy, T.E.; Roy, A.R. Delayed dynamical systems: Networks, chimeras and reservoir computing. Philos. Trans. R. Soc. A 2019, 377, 20180123. [Google Scholar] [CrossRef] [Green Version]
- Haynes, N.D.; Soriano, M.C.; Rosin, D.P.; Fischer, I.; Gauthier, A.D.J. Reservoir computing with a single time-delay autonomous Boolean node. Phys. Rev. E 2015, 91, 020801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonik, P.; Haelterman, M.; Massar, S. Brain-inspired photonic signal processor for generating periodic patterns and emulating chaotic systems. Phys. Rev. Appl. 2017, 7, 054014. [Google Scholar] [CrossRef] [Green Version]
- Brunner, D.; Penkovsky, B.; Marquez, A.; Jacquot, M.; Fischer, I.; Larger, A.L. Tutorial: Photonic neural networks in delay systems. J. Appl. Phys. 2018, 124, 152004. [Google Scholar] [CrossRef]
- Kitayama, K.I.; Notomi, M.; Naruse, M.; Inoue, K.; Kawakami, S.; Uchida, A.A. Novel frontier of photonics for data processing—Photonic accelerator. APL Photonics 2019, 4, 09090. [Google Scholar] [CrossRef] [Green Version]
- Hermans, M.; Antonik, P.; Haelterman, M.; Massar, S. Embodiment of learning in electro-optical signal processors. Phys. Rev. Lett. 2016, 117, 128301. [Google Scholar] [CrossRef] [PubMed]
- Riou, M.; Torrejon, J.; Garitaine, B.; Araujo, F.A.; Bortolotti, P.; Cros, V.; Tsunegi, S.; Yakushiji, K.; Fukushima, A.; Kubota, H.; et al. Temporal pattern recognition with delayed-feedback spin-torque nano-oscillators. Phys. Rev. Appl. 2019, 12, 024049. [Google Scholar] [CrossRef]
- Velichko, A.A.; Ryabokon, D.V.; Khanin, S.D.; Sidorenko, A.V.; Rikkiev, A.G. Reservoir computing using high order synchronization of coupled oscillators. arXiv 2020, arXiv:2004.04114. [Google Scholar]
- Zhou, P.; McDonald, N.R.; Edwards, A.J.; Loomis, L.; Thiem, C.D.; Friedman, J.S. Reservoir Computing with Planar Nanomagnet Arrays. arXiv 2020, arXiv:2003.10948. [Google Scholar]
- Dion, G.; Mejaouri, S.; Sylvestre, A.J. Reservoir computing with a single delay-coupled non-linear mechanical oscillator. J. Appl. Phys. 2018, 124, 152132. [Google Scholar] [CrossRef] [Green Version]
- Barazani, B.; Dion, G.; Morissette, J.F.; Beaudoin, L.; Sylvestre, J. Microfabricated Neuroaccelerometer: Integrating Sensing and Reservoir Computing in MEMS. J. Microelectromechan. Syst. 2020, 29, 338–347. [Google Scholar] [CrossRef] [Green Version]
- Hoerl, A.E.; Kennard, A.R.W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 1970, 12, 55–67. [Google Scholar] [CrossRef]
- Younis, M. MEMS linear and Nonlinear Statics and Dynamics; Springer Science & Business Media: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Alsaleem, F.M.; Younis, M.I.; Ouakad, H.M. On the nonlinear resonances and dynamic pull-in of electrostatically actuated resonators. J. Micromech. Microeng. 2009, 19, 045013. [Google Scholar] [CrossRef]
- Paquot, Y.; Duport, F.; Smerieri, A.; Schrauwen, B.; Haelterman, M.; Massar, S. Optoelectronic reservoir computing. Sci. Rep. 2012, 2, 287. [Google Scholar] [CrossRef]
- Vandoorne, K.; Dierckx, W.; Schrauwen, B.; Verstraeten, D.; Baets, R.; Bienstman, P.; Campenhout, A.V.J. Toward optical signal processing using photonic reservoir computing. Opt. Express 2008, 16, 11182–11192. [Google Scholar] [CrossRef]
- Hicke, K.; Escalona-Morán, M.A.; Brunner, D.; Soriano, M.C.; Fischer, I.; Mirasso, C.R. Information processing using transient dynamics of semiconductor lasers subject to delayed feedback. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 1501610. [Google Scholar] [CrossRef] [Green Version]
- Jaber, N.; Hafiz, M.A.A.; Kazmi, S.; Hasan, M.; Alsaleem, F.; Ilyas, S.; Younis, M. Efficient excitation of micro/nano resonators and their higher order modes. Sci. Rep. 2019, 9, 319. [Google Scholar] [CrossRef]
- Pathak, J.; Hunt, B.; Girvan, M.; Lu, Z.; Ott, E. Model-free prediction of large spatiotemporally chaotic systems from data: A reservoir computing approach. Phys. Rev. Lett. 2018, 120, 024102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penkovsky, B.; Porte, X.; Jacquot, M.; Larger, L.; Brunner, D. Coupled nonlinear delay systems as deep convolutional neural networks. Phys. Rev. Lett. 2019, 123, 054101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbasalipour, A.; Nikfarjam, H.; Pourkamali, S. An 8-Bit Digitally Operated Micromachined Accelerometer. J. Microelectromechanical Syst. 2020, 29, 1132–1136. [Google Scholar] [CrossRef]
- Rafaie, M.; Hasan, M.H.; Alsaleem, F.M. Neuromorphic MEMS sensor network. Appl. Phys. Lett. 2019, 114, 163501. [Google Scholar] [CrossRef]
Parameter | Physical Meaning | Value |
---|---|---|
Damping constant (in vacuum) | ||
MEMS natural frequency | ||
Electrical permittivity | F/m | |
MEMS surface area | ||
Nominal separation gap between moving and fixed electrodes | ||
Effective MEMS mass |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
H Hasan, M.; Al-Ramini, A.; Abdel-Rahman, E.; Jafari, R.; Alsaleem, F. Colocalized Sensing and Intelligent Computing in Micro-Sensors. Sensors 2020, 20, 6346. https://doi.org/10.3390/s20216346
H Hasan M, Al-Ramini A, Abdel-Rahman E, Jafari R, Alsaleem F. Colocalized Sensing and Intelligent Computing in Micro-Sensors. Sensors. 2020; 20(21):6346. https://doi.org/10.3390/s20216346
Chicago/Turabian StyleH Hasan, Mohammad, Ali Al-Ramini, Eihab Abdel-Rahman, Roozbeh Jafari, and Fadi Alsaleem. 2020. "Colocalized Sensing and Intelligent Computing in Micro-Sensors" Sensors 20, no. 21: 6346. https://doi.org/10.3390/s20216346
APA StyleH Hasan, M., Al-Ramini, A., Abdel-Rahman, E., Jafari, R., & Alsaleem, F. (2020). Colocalized Sensing and Intelligent Computing in Micro-Sensors. Sensors, 20(21), 6346. https://doi.org/10.3390/s20216346