Advanced Real-Time Monitoring of Rainfall Using Commercial Satellite Broadcasting Service: A Case Study
Abstract
:1. Introduction
2. The Smart Rainfall System (SRS)
2.1. Satellite–Earth Link Model
2.2. The RF Front-End
- 1.
- directional coupler,
- 2.
- L-band Low Noise Amplifier (LNA),
- 3.
- L-band band pass filter, and
- 4.
- logarithmic power detector.
2.3. High Level Post-Processing
3. The Monte Scarpino Landfill and the SRS Test-Bed
3.1. The SRS Test Bed
3.2. Reference Rainfall Measurements
3.3. Estimation of
4. Experimental Results
4.1. Event of 4 July 2018
4.2. Event of 14 August 2018
4.3. Comments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ARPAL | Agenzia Regionale per la Protezione dell’Ambiente Ligure (Environmental Protection Agency of the Liguria Region) |
CCTV | Closed-Circuit Television (Camera) |
DVB-S | Digital Video Broadcasting Satellite |
DVB-S2 | Digital Video Broadcasting Satellite second generation |
GIS | Geographic Information System |
IoT | Internet of Things |
ITU | International Telecommunication Union |
LNA | Low Noise Amplifier |
LNB | Low Noise Block (down-converter) |
SRS | Smart Rainfall System |
WR | Weather Radar |
References
- Acosta-Coll, M.; Ballester-Merelo, F.; Martinez-Peiró, M.; De la Hoz-Franco, E. Real-Time Early Warning System Design for Pluvial Flash Floods—A Review. Sensors 2018, 18, 2255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanza, L.; Vuerich, E. The WMO Field Intercomparison of Rain Intensity Gauges. Atmos. Res. 2009, 94, 534–543. [Google Scholar] [CrossRef]
- Zhang, G. Weather Radar Polarimetry; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2017. [Google Scholar]
- Doviak, R.J.; Zrnić, D.S. Doppler Radar and Weather Observations, 2nd ed.; Academic Press: San Diego, CA, USA, 1993. [Google Scholar]
- Huffman, G.; Bolvin, D.; Braithwaite, D.; Hsu, K.; Joyce, R.; Xie, P.; Yoo, S. Algorithm Theoretical Basis Document, Version 5.2: NASA Global Precipitation Measurement (GPM) Integrated Multi-Satellite Retrievals for GPM (IMERG); Technical Report; NASA/GSFC: Greenbelt, MD, USA, 2018.
- National Center for Atmospheric Research Staff. The Climate Data Guide: CMORPH (CPC MORPHing Technique): High Resolution Precipitation (60S-60N). 2017. Available online: https://climatedataguide.ucar.edu/climate-data/cmorph-cpc-morphing-technique-high-resolution-precipitation-60s-60n (accessed on 29 December 2020).
- Maier, R.; Krebs, G.; Pichler, M.; Muschalla, D.; Gruber, G. Spatial Rainfall Variability in Urban Environments—High-Density Precipitation Measurements on a City-Scale. Water 2020, 12, 1157. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.; Lee, B. Effects of Using High-Density Rain Gauge Networks and Weather Radar Data on Urban Hydrological Analyses. Water 2017, 9, 931. [Google Scholar] [CrossRef] [Green Version]
- Marchi, L.; Blöschl, G.; Borga, M.; Delrieu, G.; Gaumé, E.; Samuels, P.; Sempere-Torres, D.; Stancalie, G.; Szolgay, J.; Tsanis, I. Characterisation of Flash Floods Based on Analysis of Extreme European Events; EGU General Assembly: Vienna, Austria, 2009. [Google Scholar]
- Colli, M.; Cassola, F.; Martina, F.; Trovatore, E.; Delucchi, A.; Maggiolo, S.; Caviglia, D.D. Rainfall Fields Monitoring Based on Satellite Microwave Down-Links and Traditional Techniques in the City of Genoa. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6266–6280. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). Workshop on Warnings of Real-Time Hazards by Using Nowcasting Technology; Sydney, Australia. 2006. Available online: https://www.wmo.int/pages/prog/amp/pwsp/Nowcasting_workshop_proceedings.html (accessed on 19 January 2021).
- Wang, Y.; De Coning, E.; Jacobs, W.; Joe, P.; Nikitina, L.; Roberts, R.; Wang, J.; Wilson, J. Guidelines for Nowcasting Techniques; Vol. WMO-No. 1198; World Meteorological Organization (WMO): Geneva, Switzerland, 2017; Available online: https://library.wmo.int/doc_num.php?explnum_id=3795 (accessed on 19 January 2021).
- Caviglia, D.; Cinquetti, P. Smart Rainfall System: Innovative Rain Monitoring at the Scarpino Landfill. AMIU Conference on Innovation for Land Management: Scarpino 3.0. 2016. Available online: https://www.amiu.genova.it/wp-content/uploads/2017/10/Monitoraggio_piogge-Caviglia-Cinquetti.pdf (accessed on 19 January 2021). (In Italian).
- Colli, M.; Stagnaro, M.; Caridi, A.; Lanza, L.G.; Randazzo, A.; Pastorino, M.; Caviglia, D.D.; Delucchi, A. A Field Assessment of a Rain Estimation System Based on Satellite-to-Earth Microwave Links. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2864–2875. [Google Scholar] [CrossRef]
- Colli, M.; Stagnaro, M.; Caridi, A.; Lanza, L.G.; Randazzo, A.; Pastorino, M.; Caviglia, D.D.; Delucchi, A. A Field Experiment of Rainfall Intensity Estimation Based on the Analysis of Satellite-to-Earth Microwave Link Attenuation. In Applications in Electronics Pervading Industry, Environment and Society—ApplePies 2018; Saponara, S., De Gloria, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 137–144. Available online: https://link.springer.com/chapter/10.1007/978-3-030-11973-7_17 (accessed on 19 January 2021).
- Ippolito, L. Radiowave Propagation in Satellite Communications; Springer Science+Business Media B.V.: Berlin, Germany, 1986. [Google Scholar]
- Sizun, H. Radio Wave Propagation for Telecommunication Applications; Signals and Communication Technology; Springer: Berlin, Germany, 2005. [Google Scholar]
- Balanis, C.A. Antenna Theory: Analysis and Design, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- ITU. Specific Attenuation Model for Rain for Use in Prediction Methods; Recommendation ITU-R P.838-3; International Telecommunication Union. Available online: https://www.itu.int/rec/R-REC-P.838/en (accessed on 19 January 2021).
- Capsoni, C.; Luini, L.; Paraboni, A.; Riva, C. Stratiform and Convective Rain Discrimination Deduced From Local P(R). IEEE Tran. Antennas Propag. 2006, 54, 3566–3569. [Google Scholar] [CrossRef]
- Capsoni, C.; Luini, L.; Paraboni, A.; Riva, C.; Martellucci, A. A New Prediction Model of Rain Attenuation That Separately Accounts for Stratiform and Convective Rain. IEEE Trans. Antennas Propag. 2009, 57, 196–204. [Google Scholar] [CrossRef]
- Panagopoulos, A.D.; Arapoglou, P.D.M.; Cottis, P.G. Satellite communications at KU, KA, and V bands: Propagation impairments and mitigation techniques. IEEE Commun. Surv. Tutor. 2004, 6, 2–14. [Google Scholar] [CrossRef]
- Crane, R.K. Propagation Handbook for Wireless Communication System Design; The Electrical Engineering and Applied Signal Processing Series; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Oguchi, T. Effects of incoherent scattering on attenuation and depolarization of millimeter and optical waves due to hydrometeors. Radio Sci. 1986, 21, 717–730. [Google Scholar] [CrossRef]
- Beasley, J.S. Modern Electronic Communication: Pearson New International Edition; Pearson: Harlow, UK, 2013. [Google Scholar]
- Caviglia, D.; Pastorino, M.; Sguerso, D.; Caridi, A.; Montecucco, C.; Federici, B.; Gragnani, G.L.; Parodi, G.; Randazzo, A. Sistema e Metodo di Monitoraggio di un Territorio. Italian Patent UIBM n. 0001412786, 19 January 2014. [Google Scholar]
- Federici, B.; Gragnani, G.L.; Parodi, G.; Randazzo, A.; Caviglia, D.; Pastorino, M.; Sguerso, D.; Caridi, A.; Montecucco, C. System and Method for Monitoring a Territory. EU Patent EP2688223B1, 6 February 2019. [Google Scholar]
- Regione Liguria. Ortofoto AGEA. 2016. Available online: https://srvcarto.regione.liguria.it/geoviewer2/pages/apps/geoportale/index.html (accessed on 16 November 2020).
- AMIU. Scarpino Landfill. 2017. Available online: https://www.amiu.genova.it/azienda/impianti/discarica-di-scarpino/ (accessed on 16 November 2020).
- Paladino, O.; Massabò, M. Health risk assessment as an approach to manage an old landfill and to propose integrated solid waste treatment: A case study in Italy. Waste Manag. 2017, 68, 344–354. [Google Scholar] [CrossRef] [PubMed]
- Türksat Uydu Haberleşme Kablo TV ve İşletme A.Ş. Türksat Company. Available online: http://www.turksat.com.tr/ (accessed on 28 December 2020).
- SES S.A. Astra 19.2E Coverage. Available online: https://www.ses.com/our-coverage#/explore/orbital-position/196 (accessed on 28 December 2020).
- Fencl, M.; Rieckermann, J.; Sýkora, P.; Stránský, D.; Bareš, V. Commercial microwave links instead of rain gauges: Fiction or reality? Water Sci. Technol. 2015, 71, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Roversi, G.; Alberoni, P.P.; Fornasiero, A.; Porcù, F. Commercial microwave links as a tool for operational rainfall monitoring in Northern Italy. Atmos. Meas. Tech. 2020, 13, 5779–5797. [Google Scholar] [CrossRef]
- Zinevich, A.; Messer, H.; Alpert, P. Frontal Rainfall Observation by a Commercial Microwave Communication Network. J. Appl. Meteorol. Climatol. 2009, 48, 1317–1334. [Google Scholar] [CrossRef]
- Md. Atiqul, I. Statistical comparison of satellite-retrieved precipitation products with rain gauge observations over Bangladesh. Int. J. Remote Sens. 2018, 39, 2906–2936. [Google Scholar] [CrossRef] [Green Version]
- Chuancheng, Z.; Shuxia, Y.; Shiqiang, Z.; Haidong, H.; Qiudong, Z.; Shuhua, Y. Validation of the Accuracy of Different Precipitation Datasets over Tianshan Mountainous Area. Adv. Meteorol. 2015, 2015, 617382. [Google Scholar] [CrossRef]
- Silvestro, F.; Rebora, N.; Ferraris, L. An Algorithm for Real-Time Rainfall Rate Estimation by Using Polarimetric Radar: RIME. J. Hydrometeorol. 2009, 10, 227–240. [Google Scholar] [CrossRef]
Site | Channel A | Channel B | ||||||
---|---|---|---|---|---|---|---|---|
Satellite | ϑ [°] | Sub-Band | Satellite | ϑ [°] | Sub-Band | |||
Stazione S2 Torcia | Turksat 42E | 29.1 | 475 | High | Astra 19.2E | 37.7 | 475 | High |
PZS1 | Turksat 42E | 29.1 | 560 | High | Astra 19.2E | 37.7 | 560 | High |
Pala Eolica | Turksat 42E | 29.1 | 600 | High | Astra 19.2E | 37.7 | 600 | High |
Uffici Ingr | Turksat 42E | 29.1 | 590 | High | Astra 19.2E | 37.7 | 590 | High |
Site | Channel A | Channel B | ||||||
---|---|---|---|---|---|---|---|---|
Stazione S2 Torcia | 3.08 | 0.01 | 2.21 | 0.01 | 2.07 | 0.06 | 1.40 | 0.06 |
PZS1 | 1.90 | 0 | 1.46 | 0 | 0.96 | 0.33 | 1.31 | 0.32 |
Pala Eolica | 2.68 | 0.01 | 2.09 | 0.01 | 1.44 | 0.09 | 1.46 | 0.09 |
Uffici Ingr | 2.61 | 0.01 | 1.93 | 0.01 | 1.74 | 0.06 | 1.38 | 0.06 |
Site | Channel A | Channel B | ||||||
---|---|---|---|---|---|---|---|---|
Stazione S2 Torcia | 1.35 | 0.07 | 3.78 | 0.88 | 2.93 | 0.21 | 3.66 | 0.75 |
PZS1 | 1.13 | 0 | 3.95 | 0.44 | 0.79 | 0 | 4.03 | 0.37 |
Pala Eolica | 0.91 | 0 | 4 | 0.46 | 1.06 | 0 | 4.17 | 0.41 |
Uffici Ingr | 1.03 | 0 | 3.86 | 0.44 | 1.80 | 0 | 4.06 | 0.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gragnani, G.L.; Colli, M.; Tavanti, E.; Caviglia, D.D. Advanced Real-Time Monitoring of Rainfall Using Commercial Satellite Broadcasting Service: A Case Study. Sensors 2021, 21, 691. https://doi.org/10.3390/s21030691
Gragnani GL, Colli M, Tavanti E, Caviglia DD. Advanced Real-Time Monitoring of Rainfall Using Commercial Satellite Broadcasting Service: A Case Study. Sensors. 2021; 21(3):691. https://doi.org/10.3390/s21030691
Chicago/Turabian StyleGragnani, Gian Luigi, Matteo Colli, Emanuele Tavanti, and Daniele D. Caviglia. 2021. "Advanced Real-Time Monitoring of Rainfall Using Commercial Satellite Broadcasting Service: A Case Study" Sensors 21, no. 3: 691. https://doi.org/10.3390/s21030691