Adapted Fringe Projection Sequences for Changing Illumination Conditions on the Example of Measuring a Wrought-Hot Object Influenced by Forced Cooling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Temporal Phase-Unwrapping
2.2. Reconstruction Quality Metric
2.3. Compensation Method for the Light Deflection Effect Occurring in the Optical Geometry Measurements of Hot Objects
2.4. Simulation Model
2.5. 3D Measurement Setup
3. Influence of the Forced Air Flow on Phase-Shift Measurements
3.1. Theoretical Considerations
3.2. Discussion and Conclusions from the Observations
- reduce the influence of on the phase reconstruction, or
- compensate for the intensity gradient through an estimation.
3.3. Results from the Simulation Model and Discussion
4. Experiments
4.1. Experimental Setup
4.2. Sequence Analysis and New Adapted Projection Sequence
4.3. Experimental Results
4.3.1. Synthetic Intensity Gradient
4.3.2. Intensity Estimation Evaluation
4.3.3. Phase Variance Evaluation
4.3.4. Reconstruction Quality Estimation
5. Discussion
5.1. On the Results of the Synthetic Gradient Experiment
5.2. On the Results of the Approximation Quality Evaluation
5.3. On the Results of the Phase Reconstruction Quality
5.4. On the Results of the Quality Estimation of the Geometry Reconstruction
6. Summary
7. Conclusions
8. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Marrugo, A.G.; Gao, F.; Zhang, S. State-of-the-art active optical techniques for three-dimensional surface metrology: A review. JOSA A 2020, 37, B60–B77. [Google Scholar] [CrossRef] [PubMed]
- Hawryluk, M.; Ziemba, J.; Sadowski, P. A review of current and new measurement techniques used in hot die forging processes. Meas. Control 2017, 50, 74–86. [Google Scholar] [CrossRef]
- Landmann, M.; Heist, S.; Dietrich, P.; Speck, H.; Kühmstedt, P.; Tünnermann, A.; Notni, G. 3D shape measurement of objects with uncooperative surface by projection of aperiodic thermal patterns in simulation and experiment. Opt. Eng. 2020, 59, 094107. [Google Scholar] [CrossRef]
- Zatočilová, A.; Paloušek, D.; Brandejs, J. Development of a photogrammetry system for the measurement of rotationally symmetric forgings. In Proceedings of the SPIE 9525, Optical Measurement Systems for Industrial Inspection IX, Munich, Germany, 22 June 2015; Volume 9525, p. 952516. [Google Scholar]
- Zhou, Y.; Wu, Y.; Luo, C. A fast dimensional measurement method for large hot forgings based on line reconstruction. Int. J. Adv. Manuf. Technol. 2018, 99, 1713–1724. [Google Scholar] [CrossRef]
- Liu, W.; Jia, Z.; Wang, F.; Ma, X.; Wang, W.; Jia, X.; Song, D. An improved online dimensional measurement method of large hot cylindrical forging. Measurement 2012, 45, 2041–2051. [Google Scholar] [CrossRef]
- Bračun, D.; Škulj, G.; Kadiš, M. Spectral selective and difference imaging laser triangulation measurement system for on line measurement of large hot workpieces in precision open die forging. Int. J. Adv. Manuf. Technol. 2017, 90, 917–926. [Google Scholar] [CrossRef]
- Du, Z.; Wu, Z.; Yang, J. 3D measuring and segmentation method for hot heavy forging. Measurement 2016, 85, 43–53. [Google Scholar] [CrossRef]
- Dworzak, Ł.; Hawryluk, M.; Ziemba, J. Wear analysis of die inserts in the hot forging process of a forked type forging using reverse scanning techniques. Adv. Sci. Technol. Res. J. 2017, 11, 225–238. [Google Scholar] [CrossRef] [Green Version]
- Hawryluk, M.; Ziemba, J.; Dworzak, Ł. Development of a method for tool wear analysis using 3D scanning. Metrol. Meas. Syst. 2017, 24, 739–757. [Google Scholar] [CrossRef] [Green Version]
- Schöch, A.; Salvadori, A.; Germann, I.; Balemi, S.; Bach, C.; Ghiotti, A.; Carmignato, S.; Maurizio, A.L.; Savio, E. High-speed measurement of complex shaped parts at elevated temperature by laser triangulation. Int. J. Autom. Technol. 2015, 9, 558–566. [Google Scholar] [CrossRef]
- Schöch, A.; Savio, E. High-Speed Measurement of Complex Shaped Parts by Laser Triangulation for In-line Inspection. Metrology 2019, 9, 1–22. [Google Scholar]
- Beermann, R.; Quentin, L.; Pösch, A.; Reithmeier, E.; Kästner, M. Light section measurement to quantify the accuracy loss induced by laser light deflection in an inhomogeneous refractive index field. In Proceedings of the SPIE 10329, Optical Measurement Systems for Industrial Inspection X, Munich, Germany, 25–26 June 2017; Volume 10329, p. 103292T. [Google Scholar]
- Fu, X.B.; Liu, B.; Zhang, Y.C. An optical non-contact measurement method for hot-state size of cylindrical shell forging. Measurement 2012, 45, 1343–1349. [Google Scholar] [CrossRef]
- Mejia-Parra, D.; Sánchez, J.R.; Ruiz-Salguero, O.; Alonso, M.; Izaguirre, A.; Gil, E.; Palomar, J.; Posada, J. In-Line Dimensional Inspection of Warm-Die Forged Revolution Workpieces Using 3D Mesh Reconstruction. Appl. Sci. 2019, 9, 1069. [Google Scholar] [CrossRef] [Green Version]
- Han, L.; Cheng, X.; Li, Z.; Zhong, K.; Shi, Y.; Jiang, H. A Robot-Driven 3D Shape Measurement System for Automatic Quality Inspection of Thermal Objects on a Forging Production Line. Sensors 2018, 18, 4368. [Google Scholar] [CrossRef] [Green Version]
- Quentin, L.; Beermann, R.; Kästner, M.; Reithmeier, E. Development of a reconstruction quality metric for optical 3d measurement systems in use for hot-state measurement object. Opt. Eng. 2020, 59, 064103. [Google Scholar] [CrossRef]
- Novak, M.D.; Zok, F.W. High-temperature materials testing with full-field strain measurement: Experimental design and practice. Rev. Sci. Instrum. 2011, 82, 115101. [Google Scholar] [CrossRef]
- Quentin, L.; Reinke, C.; Beermann, R.; Kästner, M.; Reithmeier, E. Design, setup and evaluation of a compensation system for the light deflection effect occurring when measuring wrought-hot objects using optical triangulation methods. Metals 2020, 10, 908. [Google Scholar] [CrossRef]
- Waddington, C.; Kofman, J. Analysis of measurement sensitivity to illuminance and fringe-pattern gray levels for fringe-pattern projection adaptive to ambient lighting. Opt. Lasers Eng. 2010, 48, 251–256. [Google Scholar] [CrossRef]
- Zhou, P.; Liu, X.; He, Y.; Zhu, T. Phase error analysis and compensation considering ambient light for phase measuring profilometry. Opt. Lasers Eng. 2014, 55, 99–104. [Google Scholar] [CrossRef]
- Hoang, T.; Pan, B.; Nguyen, D.; Wang, Z. Generic gamma correction for accuracy enhancement in fringe-projection profilometry. Opt. Lett. 2010, 35, 1992–1994. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, J.; Zheng, X.; Wu, Y.; Shangguan, H. Phase error compensation and accuracy analysis for phase measurement profilometry. Opt. Eng. 2018, 57, 054105. [Google Scholar] [CrossRef]
- Chen, C.; Wan, Y.; Cao, Y. Instability of projection light source and real-time phase error correction method for phase-shifting profilometry. Opt. Express 2018, 26, 4258–4270. [Google Scholar] [CrossRef] [PubMed]
- Peng, T.; Gupta, S.K.; Lau, K. Algorithms for constructing 3-D point clouds using multiple digital fringe projection patterns. Comput.-Aided Des. Appl. 2005, 2, 737–746. [Google Scholar] [CrossRef]
- Wiora, G. Optical 3d-Metrology: Precise Shape Measurement with an Extended Fringe Projection Method. Ph.D. Thesis, University Heidelberg, Heidelberg, Germany, 2001. [Google Scholar]
- Judge, T.R.; Bryanston-Cross, P. A review of phase unwrapping techniques in fringe analysis. Opt. Lasers Eng. 1994, 21, 199–239. [Google Scholar] [CrossRef]
- Salvi, J.; Pages, J.; Batlle, J. Pattern codification strategies in structured light systems. Pattern Recognit. 2004, 37, 827–849. [Google Scholar] [CrossRef] [Green Version]
- Quan, C.; Chen, W.; Tay, C. Phase-retrieval techniques in fringe-projection profilometry. Opt. Lasers Eng. 2010, 48, 235–243. [Google Scholar] [CrossRef]
- Zuo, C.; Huang, L.; Zhang, M.; Chen, Q.; Asundi, A. Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review. Opt. Lasers Eng. 2016, 85, 84–103. [Google Scholar] [CrossRef]
- Burke, J.; Bothe, T.; Osten, W.; Hess, C.F. Reverse engineering by fringe projection. In Interferometry XI: Applications; International Society for Optics and Photonics: Bellingham, WA, USA, 2002; Volume 4778, pp. 312–324. [Google Scholar]
- Lilienblum, E.; Michaelis, B. Optical 3D Surface Reconstruction by a Multi-Period Phase Shift Method. JCP 2007, 2, 73–83. [Google Scholar] [CrossRef]
- Bräuer-Burchardt, C.; Möller, M.; Munkelt, C.; Heinze, M.; Kühmstedt, P.; Notni, G. On the accuracy of point correspondence methods in three-dimensional measurement systems using fringe projection. Opt. Eng. 2013, 52, 063601. [Google Scholar] [CrossRef]
- Reich, C.; Ritter, R.; Thesing, J. 3-D shape measurement of complex objects by combining photogrammetry and fringe projection. Opt. Eng. 2000, 39, 224–231. [Google Scholar] [CrossRef] [Green Version]
- Beermann, R.; Quentin, L.; Pösch, A.; Reithmeier, E.; Kästner, M. Background oriented schlieren measurement of the refractive index field of air induced by a hot, cylindrical measurement object. Appl. Opt. 2017, 56, 4168–4179. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.; Petz, M.; Tutsch, R. Modellbasierte Rauschvorhersage für Streifenprojektionssysteme - Ein Werkzeug zur statistischen Analyse von Auswertealgorithmen. TM-Tech. Mess. 2017, 84, 111. [Google Scholar] [CrossRef]
- Notni, G.H.; Notni, G. Digital fringe projection in 3D shape measurement: An error analysis. In Optical Measurement Systems for Industrial Inspection III; International Society for Optics and Photonics: Bellingham, WA, USA, 2003; Volume 5144, pp. 372–380. [Google Scholar]
Image Index i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|
frequency exponent k | 0 | 0 | 1 | 1 | 2 | 2 | 2 | 2 |
phase shift | 0 | 0 | 0 | |||||
phase shift | 0 | 0 | 0 |
Image Index i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8-image | frequency exponent k | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 |
phase shift | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quentin, L.; Beermann, R.; Reinke, C.; Kern, P.; Kästner, M.; Reithmeier, E. Adapted Fringe Projection Sequences for Changing Illumination Conditions on the Example of Measuring a Wrought-Hot Object Influenced by Forced Cooling. Sensors 2021, 21, 1599. https://doi.org/10.3390/s21051599
Quentin L, Beermann R, Reinke C, Kern P, Kästner M, Reithmeier E. Adapted Fringe Projection Sequences for Changing Illumination Conditions on the Example of Measuring a Wrought-Hot Object Influenced by Forced Cooling. Sensors. 2021; 21(5):1599. https://doi.org/10.3390/s21051599
Chicago/Turabian StyleQuentin, Lorenz, Rüdiger Beermann, Carl Reinke, Pascal Kern, Markus Kästner, and Eduard Reithmeier. 2021. "Adapted Fringe Projection Sequences for Changing Illumination Conditions on the Example of Measuring a Wrought-Hot Object Influenced by Forced Cooling" Sensors 21, no. 5: 1599. https://doi.org/10.3390/s21051599
APA StyleQuentin, L., Beermann, R., Reinke, C., Kern, P., Kästner, M., & Reithmeier, E. (2021). Adapted Fringe Projection Sequences for Changing Illumination Conditions on the Example of Measuring a Wrought-Hot Object Influenced by Forced Cooling. Sensors, 21(5), 1599. https://doi.org/10.3390/s21051599