Modeling, Fabrication and Integration of Wearable Smart Sensors in a Monitoring Platform for Diabetic Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insole Architecture
- a 32-bit Arm Cortex-M3 multiprotocol 2.4 GHz wireless MCU, used for data acquisition, pre-processing and transmission, through a Bluetooth Low Energy (BLE) communication
- eight multiplexed channel, 12 bit Analogue to Digital converter that digitize the pressure sensors signals
- a flash memory, to avoid data loss during the transmission phase
- electronic circuits to supply the sensors (and related circuit interfaces).
2.2. Microfabricated Piezoelectric Pressure Sensors
2.3. Microfabricated Flexible Glucose Sensors
Immobilization Protocol of Glucose Oxidase Enzyme onto the Flex Electrodes
2.4. FEA-Based Heat Transfer Analysis of Foot-Insole
- ρ is the tissue density
- Cp is the specific heat capacity at constant pressure of the tissue
- T is the tissue absolute temperature
- q is the heat flu by conduction in the tissue
- ρb is the blood density
- Cp,b is the blood specific heat capacity at constant pressure
- ωb is the blood perfusion rate
- Tb is the arterial blood temperature
- Qmet is the metabolic heat source
3. Results and Discussion
3.1. FEA Simulation Results
3.2. Characterization of Custom Pressure and Glucose Sensors.
3.2.1. Mechanical Properties of Piezoelectric Pressure Sensors
3.2.2. Detection of Glucose: Experimental Linear Sensing Range Identification and Limit of Detection (LOD)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Apelqvist, J.; Elgzyri, T.; Larsson, J.; Löndahl, M.; Nyberg, P.; Thörne, J. Factors related to outcome of neuroischemic/ischemic foot ulcer in diabetic patients. J. Vasc. Surg. 2011, 53, 1582–1588.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Said, G. Chapter 33—Diabetic neuropathy. In Handbook of Clinical Neurology; Said, G., Krarup, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 115, pp. 579–589. ISSN 0072-9752. ISBN 9780444529022. [Google Scholar] [CrossRef]
- Ducic, I.; Short, K.W.; Dellon, A.L. Relationship Between Loss of Pedal Sensibility, Balance, and Falls in Patients with Peripheral Neuropathy. Ann. Plast. Surg. 2004, 52, 535–540. [Google Scholar] [CrossRef]
- Goyal, M.; Reeves, N.D.; Rajbhandari, S.; Ahmad, N.; Wang, C.; Yap, M.H. Recognition of ischaemia and infection in diabetic foot ulcers: Dataset and techniques. Comput. Biol. Med. 2020, 117, 103616. [Google Scholar] [CrossRef] [PubMed]
- Prompers, L.; Huijberts, M.; Apelqvist, J.; Jude, E.; Piaggesi, A.; Bakker, K.; Edmonds, M.; Holstein, P.; Jirkovska, A.; Mauricio, D.; et al. High prevalence of ischaemia, infection and serious comorbidity in patients with diabetic foot disease in Europe. Baseline results from the Eurodiale study. Diabetologia 2007, 50, 18–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frykberg, R.G.; Lavery, L.A.; Pham, H.; Harvey, C.; Harkless, L.; Veves, A. Role of Neuropathy and High Foot Pressures in Diabetic Foot Ulceration. Diabetes Care 1998, 21, 1714–1719. [Google Scholar] [CrossRef] [PubMed]
- Fernando, M.E.; Crowther, R.G.; Pappas, E.; Lazzarini, P.A.; Cunningham, M.; Sangla, K.S.; Buttner, P.; Golledge, J. Plantar Pressure in Diabetic Peripheral Neuropathy Patients with Active Foot Ulceration, Previous Ulceration and No History of Ulceration: A Meta-Analysis of Observational Studies. PLoS ONE 2014, 9, e99050. [Google Scholar] [CrossRef] [Green Version]
- Pataky, Z.; Golay, A.; Bounameaux, H.; Bobbioni-Harsch, E.; Assal, J.P. Relationship between peripheral vascular disease and high plantar pressures in diabetic neuro-ischaemic patients. Diabetes Metab. 2003, 29, 489–495. [Google Scholar] [CrossRef]
- Pataky, Z.; Assal, J.-P.; Conne, P.; Vuagnat, H.; Golay, A. Plantar pressure distribution in Type 2 diabetic patients without peripheral neuropathy and peripheral vascular disease. Diabet. Med. 2005, 22, 762–767. [Google Scholar] [CrossRef]
- Sutkowska, E.; Sutkowski, K.; Sokołowski, M.; Franek, E.; Dragan, S. Distribution of the Highest Plantar Pressure Regions in Patients with Diabetes and Its Association with Peripheral Neuropathy, Gender, Age, and BMI: One Centre Study. J. Diabetes Res. 2019, 2019, 7395769. [Google Scholar] [CrossRef] [PubMed]
- Pitei, D.L.; Lord, M.; Foster, A.; Wilson, S.; Watkins, P.J.; Edmonds, M.E. Plantar pressures are elevated in the neuroischemic and the neuropathic diabetic foot. Diabetes Care 1999, 22, 1966–1970. [Google Scholar] [CrossRef]
- Fernando, M.E.; Crowther, R.G.; Wearing, S. The Importance of Foot Pressure in Diabetes. In Handbook of Human Motion; Müller, B., Wolf, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Fernando, M.E.; Crowther, R.G.; Lazzarini, P.A.; Sangla, K.S.; Wearing, S.; Buttner, P.; Golledge, J. Plantar pressures are higher in cases with diabetic foot ulcers compared to controls despite a longer stance phase duration. BMC Endocr. Disord. 2016, 16, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volmer-Thole, M.; Lobmann, R. Neuropathy and Diabetic Foot Syndrome. Int. J. Mol. Sci. 2016, 17, 917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perkins, B.A. Rethinking Neuropathy in Type 1 Diabetes: Had We Lost Sight of What Matters Most? Diabetes Care 2020, 43, 695–697. [Google Scholar] [CrossRef] [Green Version]
- Adams, O.P.; Herbert, J.R.; Howitt, C.; Unwin, N. The prevalence of peripheral neuropathy severe enough to cause a loss of protective sensation in a population-based sample of people with known and newly detected diabetes in Barbados: A cross-sectional study. Diabet. Med. 2019, 36, 1629–1636. [Google Scholar] [CrossRef] [PubMed]
- Chatwin, K.E.; Abbott, C.A.; Boulton, A.J.; Bowling, F.L.; Reeves, N.D. The role of foot pressure measurement in the prediction and prevention of diabetic foot ulceration—A comprehensive review. Diabetes/Metab. Res. Rev. 2020, 36, e3258. [Google Scholar] [CrossRef]
- Anjos, D.M.C.; Gomes, L.P.O.; Sampaio, L.M.M.; Correa, J.C.F.; Oliveira, C.S. Assessment of plantar pressure and balance in patients with diabet. Arch. Med. Sci. 2010, 6, 43–48. [Google Scholar] [CrossRef]
- Drăgulinescu, A.; Drăgulinescu, A.-M.; Zincă, G.; Bucur, D.; Feieș, V.; Neagu, D.-M. Smart Socks and In-Shoe Systems: State-of-the-Art for Two Popular Technologies for Foot Motion Analysis, Sports, and Medical Applications. Sensors 2020, 20, 4316. [Google Scholar] [CrossRef]
- Pai, S.; Vawter, P.T.; LeDoux, W.R. The Effect of Prior Compression Tests on the Plantar Soft Tissue Compressive and Shear Properties. J. Biomech. Eng. 2013, 135, 094501–0945015. [Google Scholar] [CrossRef] [Green Version]
- Niroomandi, S.; Perrier, A.; Bucki, M.; Payan, Y. Real-time computer modeling in prevention of foot pressure ulcer using patient-specific finite element model and model order reduction techniques. Innov. Emerg. Technol. Wound Care 2020, 87–102. [Google Scholar] [CrossRef]
- De Berardinis, J.; Trabia, M.; Dufek, J.S. Review of Foot Plantar Pressure—Focus on the Development of Foot Ulcerations. Open Access J. Sci. Technol. 2016, 4, 101158. [Google Scholar] [CrossRef] [Green Version]
- Malhotra, S.; Bello, E.; Kominsky, S. Diabetic Foot Ulcerations: Biomechanics, Charcot Foot, and Total Contact Cast. Semin. Vasc. Surg. 2012, 25, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Taborri, J.; Rossi, S.; Palermo, E.; Patanè, F.; Cappa, P. A Novel HMM Distributed Classifier for the Detection of Gait Phases by Means of a Wearable Inertial Sensor Network. Sensors 2014, 14, 16212–16234. [Google Scholar] [CrossRef]
- Benbakhti, A.S.; Boukhenous, S.; Zizoua, C.; Attari, M. An instrumented shoe for ambulatory prevention of diabetic foot ulceration. In Proceedings of the 2014 4th International Conference on Wireless Mobile Communication and Healthcare—Transforming Healthcare Through Innovations in Mobile and Wireless Technologies (MOBIHEALTH), Athens, Greece, 3–5 November 2014; pp. 43–46. [Google Scholar] [CrossRef]
- Yong, K.F.; Forero, J.P.; Foong, S.; Nanayakkara, S. AH’15. In Proceedings of the 6th Augmented Human International Conference, Marina Bay Sands, Singapore, 9–11 March 2015; pp. 167–168. [Google Scholar] [CrossRef]
- Tee, K.S.; Javahar, Y.S.H.; Saim, H.; Zakaria, W.N.W.; Khialdin, S.B.M.; Isa, H.; Awad, M.I.; Soon, C.F. A Portable Insole Pressure Mapping System. TELKOMNIKA Telecommun. Comput. Electron. Control. 2017, 15, 1493–1500. [Google Scholar] [CrossRef]
- Schneider, W.L.; Severn, M. Prevention of Plantar Ulcers in People with Diabetic Peripheral Neuropathy Using Pressure-Sensing Shoe Insoles. 2017 Jun 1. In CADTH Issues in Emerging Health Technologies; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, Canada, 2016; p. 160. Available online: https://www.ncbi.nlm.nih.gov/books/NBK476437 (accessed on 31 December 2020).
- Aqueveque, P.; Osorio, R.; Pastene, F.; Saavedra, F.; Pino, E. Capacitive Sensors Array for Plantar Pressure Measurement Insole fabricated with Flexible PCB. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17–21 July 2018; pp. 4393–4396. [Google Scholar] [CrossRef]
- Pappas, I.P.I.; Keller, T.; Mangold, S.; Popovic, M.R.; Dietz, V.; Morari, M. A reliable gyroscope-based gait-phase de-tection sensor embedded in a shoe insole. IEEE Sens. J. 2004, 4, 268–274. [Google Scholar] [CrossRef]
- Interlink Electronics Inc. Force Sensing Resistor® Integration Guide and Evaluation Parts Catalog. Available online: https://www.sparkfun.com/datasheets/Sensors/Pressure/fsrguide.pdf (accessed on 24 April 2019).
- Razak, A.H.A.; Zayegh, A.; Begg, R.K.; Wahab, Y. Foot Plantar Pressure Measurement System: A Review. Sensors 2012, 12, 9884–9912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motha, L.; Kim, J.; Kim, W.S. Instrumented rubber insole for plantar pressure sensing. Org. Electron. 2015, 23, 82–86. [Google Scholar] [CrossRef]
- Park, J.; Kim, M.; Hong, I.; Kim, T.; Lee, E.; Kim, E.-A.; Ryu, J.-K.; Jo, Y.; Koo, J.; Han, S.; et al. Foot Plantar Pressure Measurement System Using Highly Sensitive Crack-Based Sensor. Sensors 2019, 19, 5504. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, D.G.; Holtz-Neiderer, K.; Wendel, C.; Mohler, M.J.; Kimbriel, H.R.; Lavery, L.A. Skin Temperature Monitoring Reduces the Risk for Diabetic Foot Ulceration in High-risk Patients. Am. J. Med. 2007, 120, 1042–1046. [Google Scholar] [CrossRef]
- Ring, E.F.J.; Ammer, K. Infrared thermal imaging in medicine. Physiol. Meas. 2012, 33, R33–R46. [Google Scholar] [CrossRef] [PubMed]
- Etehadtavakol, M.; Ng, E.Y.K. Assessment of foot complications in diabetic patients using thermography: A review. In Application of Infrared to Biomedical Sciences; Springer: Singapore, 2017; pp. 33–43. [Google Scholar]
- Bagavathiappan, S.; Philip, J.; Jayakumar, T.; Raj, B.; Rao, P.N.S.; Varalakshmi, M.; Mohan, V. Correlation between plantar foot temperature and diabetic neuropathy: A case study by using an infrared thermal imaging technique. J. Diabetes Sci. Technol. 2010, 4, 1386–1392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavery, L.A.; Higgins, K.R.; Lanctot, D.R.; Constantinides, G.P.; Zamorano, R.G.; Armstrong, D.G.; Athanasiou, K.A.; Agrawal, C.M. Home monitoring of foot skin temperatures to prevent ulceration. Diabetes Care 2004, 27, 2642–2647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavery, L.; Peters, E.; Armstrong, D. What are the most effective interventions in preventing diabetic foot ul-cers? Intern. Wound J. 2008, 5, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Brem, H.; Sheehan, P.; Rosenberg, H.J.; Schneider, J.S.; Boulton, A.J.M. Evidence-Based Protocol for Diabetic Foot Ulcers. Plast. Reconstr. Surg. 2006, 117, 193S–209S. [Google Scholar] [CrossRef]
- Ilo, A.; Romsi, P.; Mäkelä, J. Infrared Thermography and Vascular Disorders in Diabetic Feet. J. Diabetes Sci. Technol. 2020, 14, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Peregrina-Barreto, H.; Morales-Hernandez, L.A.; Rangel-Magdaleno, J.J.; Avina-Cervantes, J.G.; Ramirez-Cortes, J.M.; Morales-Caporal, R. Quantitative Estimation of Temperature Variations in Plantar Angiosomes: A Study Case for Diabetic Foot. Comput. Math. Methods Med. 2014, 2014, 1–10. [Google Scholar] [CrossRef]
- Martín-Vaquero, J.; Encinas, A.H.; Queiruga-Dios, A.; Bullón, J.J.; Martínez-Nova, A.; González, J.T.; Bullón-Carbajo, C. Review on Wearables to Monitor Foot Temperature in Diabetic Patients. Sensors 2019, 19, 776. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2009, 32 (Suppl. 1), S62–S67. [Google Scholar] [CrossRef] [Green Version]
- Röder, P.V.; Wu, B.; Liu, Y.; Han, W. Pancreatic regulation of glucose homeostasis. Exp. Mol. Med. 2016, 48, e219. [Google Scholar] [CrossRef] [Green Version]
- Papatheodorou, K.; Banach, M.; Bekiari, E.; Rizzo, M.; Edmonds, M. Complications of Diabetes 2017. J. Diabetes Res. 2018, 2018, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.webmd.com/diabetes/guide/risks-complications-uncontrolled-diabetes (accessed on 31 December 2020).
- Lipska, K.J.; Ross, J.S.; Miao, Y.; Shah, N.D.; Lee, S.J.; Steinman, M.A. Potential Overtreatment of Diabetes Mellitus in Older Adults with Tight Glycemic Control. JAMA Intern. Med. 2015, 175, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Brod, M.; Kongsø, J.H.; Lessard, S.; Christensen, T.L. Psychological insulin resistance: Patient beliefs and implications for diabetes management. Qual. Life Res. 2009, 18, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Zhang, Y.; Wu, J. Review of non-invasive continuous glucose monitoring based on impedance spectroscopy. Sens. Actuators A Phys. 2020, 311, 112103. [Google Scholar] [CrossRef]
- Moyer, J.; Wilson, D.; Finkelshtein, I.; Wong, B.; Potts, R. Correlation Between Sweat Glucose and Blood Glucose in Subjects with Diabetes. Diabetes Technol. Ther. 2012, 14, 398–402. [Google Scholar] [CrossRef]
- Hauke, A.; Simmers, P.C.; Ojha, Y.R.; Cameron, B.D.; Ballweg, R.; Zhang, T.; Twine, N.B.; Brothers, M.; Gomez, E.; Heikenfeld, J. Complete validation of a continuous and blood-correlated sweat biosensing device with integrated sweat stimulation. Lab Chip 2018, 18, 3750–3759. [Google Scholar] [CrossRef]
- Lee, H.; Hong, Y.J.; Baik, S.; Hyeon, T.; Kim, D. Enzyme-Based Glucose Sensor: From Invasive to Wearable Device. Adv. Health Mater. 2018, 7, e1701150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vashist, S.K. Non-invasive glucose monitoring technology in diabetes management: A review. Anal. Chim. Acta 2012, 750, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Campbell, A.S.; Wang, J. Wearable non-invasive epidermal glucose sensors: A review. Talanta 2018, 177, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.-C.; Sugiarto, T.; Chen, J.-W.; Lin, Y.-J. The Design and Application of Simplified Insole-Based Prototypes with Plantar Pressure Measurement for Fast Screening of Flat-Foot. Sensors 2018, 18, 3617. [Google Scholar] [CrossRef] [Green Version]
- Coates, J.; Chipperfield, A.; Clough, G. Wearable Multimodal Skin Sensing for the Diabetic Foot. Electronics 2016, 5, 45. [Google Scholar] [CrossRef] [Green Version]
- Tao, J.; Dong, M.; Li, L.; Wang, C.; Li, J.; Liu, Y.; Bao, R.; Pan, C. Real-time pressure mapping smart insole system based on a controllable vertical pore dielectric layer. Microsyst. Nanoeng. 2020, 6, 1–10. [Google Scholar] [CrossRef]
- Rescio, G.; Leone, A.; Francioso, L.; Losito, P.; Genco, E.; Crudele, F.; D’Alessandro, L.; Siciliano, P. Fully Integrated Smart Insole for Diabetic Foot. In Ambient Assisted Living; Lecture Notes in Electrical Engineering; Springer: Cham, Switzerland, 2019; Volume 544. [Google Scholar]
- Ferber, R.; Webber, T.; Everett, B.; Groenland, M. Validation of Plantar Pressure Measurements for a Novel in-Shoe Plantar Sensory Replacement Unit. J. Diabetes Sci. Technol. 2013, 7, 1167–1175. [Google Scholar] [CrossRef] [Green Version]
- Signore, M.A.; Rescio, G.; De Pascali, C.; Iacovacci, V.; Dario, P.; Leone, A.; Quaranta, F.; Taurino, A.; Siciliano, P.; Francioso, L. Fabrication and characterization of AlN-based flexible piezoelectric pressure sensor integrated into an implantable artificial pancreas. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.C.; Xu, H.; Gao, X.Q.; Hou, X.L.; Li, Y. A Modified Method for Hardness Determination from Nanoindentation Experiments with Imperfect Indenters. Adv. Mater. Sci. Eng. 2016, 2016, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement. Part 3; JCGM 100:2008; Bureau International Des Poids et Mesures: Saint-Cloud, France, 2008; Available online: https://www.bipm.org/en/publications/guides/gum.html (accessed on 31 December 2020).
- Khadka, R.; Aydemir, N.; Carraher, C.; Hamiaux, C.; Colbert, D.; Cheema, J.; Malmström, J.; Kralicek, A.; Travas-Sejdic, J. An ultrasensitive electrochemical impedance-based biosensor using insect odorant recep-tors to detect odorants. Biosens. Bioelectron. 2019, 126, 207–213. [Google Scholar] [CrossRef]
- Kuklane, K.; Afanasieva, R.; Burmistrova, O.; Bessonova, N.; Holmér, I. Determination of Heat Loss from the Feet and Insulation of the Footwear. Int. J. Occup. Saf. Ergon. 1999, 5, 465–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashan, M.; Hasan, K.M.F.; Khandaker, F.R.; Karmaker, K.; Deng, Z.; Zilani, M.J. Functional Properties Improvement of Socks Items Using Different Types of Yarn. Int. J. Text. Sci. 2017, 6, 34–42. [Google Scholar] [CrossRef]
- Pennes, H.H. Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm. J. Appl. Physiol. 1948, 1, 93–122. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, A.; Chanmugam, A.; Herman, C. Heat transfer model for deep tissue injury: A step towards an early thermographic diagnostic capability. Diagn. Pathol. 2014, 9, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Çetingül, M.P.; Herman, C. A heat transfer model of skin tissue for the detection of lesions: Sensitivity analysis. Phys. Med. Biol. 2010, 55, 5933–5951. [Google Scholar] [CrossRef]
- Cichowitz, A.; Pan, W.R.; Ashton, M. The heel: Anatomy, blood supply, and the pathophysiology of pressure ulcers. Ann. Plast. Surg. 2009, 62, 423–429. [Google Scholar] [CrossRef]
- Ruschkewitz, Y.; Gefen, A. Cell-level temperature distributions in skeletal muscle post spinal cord injury as related to deep tissue injury. Med Biol. Eng. Comput. 2009, 48, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Aoi, N.; Yoshimura, K.; Kadono, T.; Nakagami, G.; Iizuka, S.; Higashino, T.; Araki, J.; Koshima, I.; Sanada, H. Ultrasound Assessment of Deep Tissue Injury in Pressure Ulcers: Possible Prediction of Pressure Ulcer Progression. Plast. Reconstr. Surg. 2009, 124, 540–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrman, E.C.; Knapp, C.F.; Donofrio, J.C.; Salcido, R. Skin perfusion responses to surface pressure-induced ischemia: Implication for the developing pressure ulcer. J. Rehabil. Res. Dev. 1999, 36, 109–120. [Google Scholar] [PubMed]
- Linder-Ganz, E.; Gefen, A. The Effects of Pressure and Shear on Capillary Closure in the Microstructure of Skeletal Muscles. Ann. Biomed. Eng. 2007, 35, 2095–2107. [Google Scholar] [CrossRef]
- Roscow, J.I.; Pearce, H.; Khanbareh, H.; Kar-Narayan, S.; Bowen, C.R. Modified energy harvesting figures of merit for stress- and strain-driven piezoelectric systems. Eur. Phys. J. Speéc. Top. 2019, 228, 1537–1554. [Google Scholar] [CrossRef] [Green Version]
- Matloub, R.; Metzger, T.; Muralt, P. Piezoelectric Al1−xScxN thin films: A semiconductor compatible solution for mechanical energy harvesting and sensors. Appl. Phys. Lett. 2013, 102, 152903. [Google Scholar] [CrossRef] [Green Version]
- Cargill, A.A. Development of an Enzymatic Glucose Biosensor for Applications in Wearable Sweat-Based Sensing. Master’s Thesis, Iowa State University, Ames, IA, USA, 2016. [Google Scholar] [CrossRef]
- Oliver, N.S.; Toumazou, C.; Cass, A.E.G.; Johnston, D.G. Glucose sensors: A review of current and emerging technology. Diabet. Med. 2009, 26, 197–210. [Google Scholar] [CrossRef] [PubMed]
- Lavín, Á.; De Vicente, J.; Holgado, M.; Laguna, M.F.; Casquel, R.; Santamaría, B.; Maigler, M.V.; Hernández, A.L.; Ramírez, Y. On the Determination of Uncertainty and Limit of Detection in Label-Free Biosensors. Sensors 2018, 18, 2038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, D.-W.; Lee, S.; Seo, M.; Chung, T.D. Recent advances in electrochemical non-enzymatic glucose sensors—A review. Anal. Chim. Acta 2018, 1033, 1–34. [Google Scholar] [CrossRef]
- Heikenfeld, J. Non-invasive Analyte Access and Sensing through Eccrine Sweat: Challenges and Outlook circa 2016. Electroanalysis 2016, 28, 1242–1249. [Google Scholar] [CrossRef]
- IUPAC. Compendium of Chemical Terminology, 2nd ed.; the “Gold Book”; Blackwell Scientific Publications: Oxford, UK, 1997; ISBN 0-9678550-9-8. [Google Scholar]
Conditioning Solution | 0.1 M Citrate Buffer | 0.05 M Sulfuric Acid |
---|---|---|
Start E (V) | 0.5 | 0.5 |
High E (V) | 1.7 | 1.0 |
Low E (V) | −1.2 | −1.2 |
Scans | 10 | 10 |
Scan Rate (V s−1) | 0.1 | 0.1 |
Density (Kg/m3) | Thermal Conductivity (W/m/K) | Specific Heat (J/Kg/K) | Thickness (mm) | |
---|---|---|---|---|
Kapton | 1300 | 0.15 | 1100 | 0.36 |
Copper | 8960 | 401 | 384 | 0.018 |
Polyurethane | 374 | 0.06 | 1337 | Upper: 1 Bottom: 3 |
Rubber | 1100 | 0.13 | 2010 | 15 |
Tissue | Specific Heat (J/Kg/K) | Thermal Conductivity (W/m/K) | Density (Kg/m3) | Metabolic Heat Generation (W/m3) | Perfusion Rate * 10−3 (1/s) | Thickness (mm) |
---|---|---|---|---|---|---|
Epidermis | 3589 | 0.235 | 1200 | 0 | 0 | 0.46 |
Papillary dermis | 3300 | 0.445 | 1200 | 368.1 | 0.18 | 1.67 |
Reticular dermis | 3300 | 0.445 | 1200 | 368.1 | 1.26 | 1.67 |
Fat | 2674 | 0.185 | 1000 | 368.3 | 0.08 | 5 |
Muscle | 3600 | 0.51 | 1085 | 684.2 | 2.7 | 25 |
Inflammation | 2450 | 0.558 | 1037 | 5262.5 | 6.95 | 2.5 |
Ischemia | 2450 | 0.1 | 1037 | 342.1 | 0.405 | 2.5 |
Parameters for Chronoamperometry | Set E (V) | +0.3 |
Duration (s) | 3 | |
Interval Time (s) | 0.1 | |
N. of repeats | 30 | |
Parameters for Cyclic Voltammetry | Start E (V) | +0.5 |
High E (V) | 1.0 | |
Low E (V) | −1.2 | |
Scans | 4 | |
Scan Rate (V s−1) | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Pascali, C.; Francioso, L.; Giampetruzzi, L.; Rescio, G.; Signore, M.A.; Leone, A.; Siciliano, P. Modeling, Fabrication and Integration of Wearable Smart Sensors in a Monitoring Platform for Diabetic Patients. Sensors 2021, 21, 1847. https://doi.org/10.3390/s21051847
De Pascali C, Francioso L, Giampetruzzi L, Rescio G, Signore MA, Leone A, Siciliano P. Modeling, Fabrication and Integration of Wearable Smart Sensors in a Monitoring Platform for Diabetic Patients. Sensors. 2021; 21(5):1847. https://doi.org/10.3390/s21051847
Chicago/Turabian StyleDe Pascali, Chiara, Luca Francioso, Lucia Giampetruzzi, Gabriele Rescio, Maria Assunta Signore, Alessandro Leone, and Pietro Siciliano. 2021. "Modeling, Fabrication and Integration of Wearable Smart Sensors in a Monitoring Platform for Diabetic Patients" Sensors 21, no. 5: 1847. https://doi.org/10.3390/s21051847
APA StyleDe Pascali, C., Francioso, L., Giampetruzzi, L., Rescio, G., Signore, M. A., Leone, A., & Siciliano, P. (2021). Modeling, Fabrication and Integration of Wearable Smart Sensors in a Monitoring Platform for Diabetic Patients. Sensors, 21(5), 1847. https://doi.org/10.3390/s21051847