A Compact High-Quality Image Demosaicking Neural Network for Edge-Computing Devices
Abstract
:1. Introduction
2. Related Works
3. Background
4. Proposed Network
4.1. Model of Image Demosaicking
4.2. Network Architecture
4.2.1. Image Feature Extraction
4.2.2. Image Reconstruction
5. Experiments and Results
5.1. Training
5.2. Tests for Quantitative and Qualitative Performance
5.3. Tests for Computational Cost
5.4. Tests for Extended Applications
5.5. Ablation Study for the Gaussian Smoothing Layers
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lukac, R.; Plataniotis, K. Color filter arrays: Design and performance analysis. IEEE Trans. Consum. Electron. 2005, 51, 1260–1267. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wu, J.; Wu, Z.; Jeon, G.; Jeong, J. Demosaicking: Color filter array interpolation. IEEE Signal Process. Mag. 2005, 17, 44–49. [Google Scholar]
- Malvar, H.S.; He, L.W.; Cutler, R. High-quality linear interpolation for demosaicing of Bayer-patterned color images. In Proceedings of the 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Montreal, QC, Canada, 17–21 May 2004; Volume 3, p. iii-485. [Google Scholar] [CrossRef]
- Wang, D.; Yu, G.; Zhou, X.; Wang, C. Image demosaicking for Bayer-patterned CFA images using improved linear interpolation. In Proceedings of the 7th International Conference on Innovation in Science and Technology, Da Nang, Vietnam, 16–19 April 2017; pp. 464–469. [Google Scholar] [CrossRef]
- Kiku, D.; Monno, Y.; Tanaka, M.; Okutomi, M. Residual interpolation for color image demosaicking. In Proceedings of the 2013 IEEE International Conference on Image Processing, Melbourne, Australia, 15–18 September 2013; Volume 17, pp. 2304–2308. [Google Scholar] [CrossRef]
- Kiku, D.; Monno, Y.; Tanaka, M.; Okutomi, M. Minimized-Laplacian residual interpolation for color image demosaicking. Digit. Photogr. X 2014, 9023, 90230L. [Google Scholar] [CrossRef]
- Monno, Y.; Kiku, D.; Tanaka, M.; Okutomi, M. Adaptive residual interpolation for color and multispectral image demosaicking. Sensors 2017, 17, 2787. [Google Scholar] [CrossRef] [Green Version]
- Moghadam, A.A.; Aghagolzadeh, M.; Kumar, M.; Radha, H. A compressive framework for demosaicing of natural images. IEEE Trans. Image Process. 2013, 22, 2356–2371. [Google Scholar] [CrossRef] [PubMed]
- Kaur, E.S.; Banga, V.K. A Survey of Demosaicing: Issues and Challenges. Int. J. Sci. Eng. Technol. 2015, 2, 9–17. [Google Scholar]
- Gharbi, M.; Chaurasia, G.; Paris, S.; Durand, F. Deep joint demosaicking and denoising. ACM Trans. Graph. 2016, 35, 1–12. [Google Scholar] [CrossRef]
- Tan, R.; Zhang, K.; Zuo, W.; Zhang, L. Color image demosaicking via deep residual learning. In Proceedings of the 2017 IEEE International Conference on Multimedia and Expo (ICME), Hong Kong, China, 10–14 July 2017; p. 24. [Google Scholar]
- Syu, N.-S.; Chen, Y.-S.; Chuang, Y.-Y. Learning Deep Convolutional Networks for Demosaicing. Available online: http://arxiv.org/abs/1802.03769 (accessed on 11 February 2018).
- Kokkinos, F.; Lefkimmiatis, S. Deep image demosaicking using a cascade of convolutional residual denoising networks. In Proceedings of the 2018 European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 303–319. [Google Scholar] [CrossRef] [Green Version]
- Cui, K.; Jin, Z.; Steinbach, E. Color image demosaicking using a 3-stage convolutional neural network structure. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 2177–2181. [Google Scholar]
- Podili, A.; Zhang, C.; Prasanna, V. Fast and efficient implementation of Convolutional Neural Networks on FPGA. In Proceedings of the 2017 IEEE 28th International Conference on Application-Specific Systems, Architectures and Processor, Seatlle, WA, USA, 10–12 July 2017; pp. 11–18. [Google Scholar] [CrossRef]
- Shafiee, A.; Nag, A.; Muralimanohar, N.; Balasubramonian, R.; Strachan, J.P.; Hu, M.; Williams, R.S.; Srikumar, V. ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars. In Proceedings of the 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), Seoul, Korea, 18–22 June 2016. [Google Scholar] [CrossRef]
- Li, H.; Fan, X.; Jiao, L.; Cao, W.; Zhou, X.; Wang, L. A high performance FPGA-based accelerator for large-scale convolutional neural networks. In Proceedings of the 2016 26th International Conference on Field Programmable Logic and Applications (FPL), Lausanne, Switzerland, 29 August–2 September 2016; pp. 1–9. [Google Scholar] [CrossRef]
- Shi, C.; Yang, J.; Han, Y.; Cao, Z.; Qin, Q.; Liu, L.; Wu, M.-J.; Wang, Z. A 1000 fps vision chip based on a dynamically reconfigurable hybrid architecture comprising a PE array processor and self-organizing map neural network. IEEE J. Solid-State Circuits 2014, 49, 2067–2082. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Z.; Yang, J.; Liu, L.; Wu, N. A novel vision chip architecture for image recognition based on convolutional neural network. In Proceedings of the 2015 IEEE 11th International Conference on ASIC, Chengdu, China, 3–5 November 2015. [Google Scholar] [CrossRef]
- Wu, N. Neuromorphic vision chips. Sci. China Inf. Sci. 2018, 61, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Yang, Y.; Chen, Z.; Liu, L.; Liu, J.; Wu, N. A heterogeneous parallel processor for high-speed vision chip. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 746–758. [Google Scholar] [CrossRef]
- Niu, Y.; Ouyang, J.; Zuo, W.; Wang, F. Low Cost Edge Sensing for High Quality Demosaicking. IEEE Trans. Image Process. 2018, 28, 2415–2427. [Google Scholar] [CrossRef]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8692, pp. 184–199. [Google Scholar] [CrossRef]
- Dong, C.; Loy, C.C.; Tang, X. Accelerating the super-resolution convolutional neural network. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9906, pp. 391–407. [Google Scholar] [CrossRef] [Green Version]
- Habtegebrial, T.A.; Reis, G.; Stricker, D. Deep convolutional networks for snapshot hypercpectral demosaicking. In Proceedings of the 2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amterdam, The Netherlands, 24–26 September 2019; pp. 1–5. [Google Scholar]
- Dijkstra, K.; van de Loosdrecht, J.; Schomaker, L.R.B.; Wiering, M.A. Hyperspectral demosaicking and crosstalk correction using deep learning. Mach. Vis. Appl. 2019, 30, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Pan, Z.; Li, B.; Bao, Y.; Cheng, H. Deep panchromatic image guided residual interpolation for multispectral image demosaicking. In Proceedings of the 2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amterdam, The Netherlands, 24–26 September 2019. [Google Scholar] [CrossRef]
- Zhou, Z.; Siddiquee, M.R. UNet++: A Nested U-Net architecture for medical image segmentation. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Springer: Cham, Switzerland, 2018; pp. 3–11. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar] [CrossRef] [Green Version]
- Park, B.; Yu, S.; Jeong, J. Densely connected hierarchical network for image denoising. In Proceedings of the 2019 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–20 June 2019; pp. 2104–2113. [Google Scholar] [CrossRef]
- Xie, C.; Yang, X.; Yan, B.; Lu, L. RGB-NIR image demosaicing based on deep learning. J. Comput. Appl. 2019, 39, 2899–2904. [Google Scholar]
- Shopovska, I.; Jovanov, L.; Philips, W. RGB-NIR Demosaicing Using Deep Residual U-Net. In Proceedings of the 2018 26th Telecommunications Forum (TELFOR), Belgrade, Serbia, 20–21 November 2018; pp. 2018–2021. [Google Scholar] [CrossRef]
- Kokkinos, F.; Lefkimmiatis, S. Iterative joint image demosaicking and denoising using a residual denoising network. IEEE Trans. Image Process. 2019, 28, 4177–4188. [Google Scholar] [CrossRef]
- Zhou, R.; Achanta, R.; Süsstrunk, S. Deep residual network for joint demosaicing and super-resolutionin. In Proceedings of the 26th Color and Imaging Conference, Society for Imaging Science and Technology, Vancouver, BC, Canada, 12–16 November 2018; Volume 1, pp. 75–80. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Gallo, O.; Frosio, I.; Kautz, J. Loss functions for image restoration with neural networks. IEEE Trans. Comput. Imaging 2016, 3, 47–57. [Google Scholar] [CrossRef]
- Guangtao, Z.; Xiongkuo, M. Perceptual Image Quality Assessment: A Survey. Sci. China Inf. Sci. 2020, 63, 1–52. [Google Scholar] [CrossRef]
- Romanuke, V.V. Appropriate number of standard 2 × 2 max pooling layers and their allocation in convolutional neural networks for diverse and heterogeneous datasets. Inf. Technol. Manag. Sci. 2018, 20, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y. ESRGAN: Enhanced super-resolution generative adversarial networks. In Proceedings of the 2018 European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 1–16. [Google Scholar]
- Howard, A.G.; Zku, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. Available online: http://arxiv.org/abs/1704.04861 (accessed on 17 April 2017).
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1026–1034. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.; Li, K.; Fei-fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009. [Google Scholar] [CrossRef] [Green Version]
- Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Li, X.; Gunturk, B.; Zhang, L. Image demosaicing: A systematic survey. Vis. Commun. Image Process. 2008, 6822, 68221J. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, X.; Buades, A.; Li, X. Color demosaicking by local directional interpolation and nonlocal adaptive thresholding. J. Electron. Imaging 2011, 20, 023016. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.B.; Singh, A.; Ahuja, N. Single Image Super-resolution from Transformed Self-Exemplars. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 5197–5206. [Google Scholar]
- Matsui, Y.; Ito, K.; Aramaki, Y.; Fujimoto, A.; Ogawa, T.; Yamasaki, T.; Aizawa, K. Sketch-based manga retrieval using manga109 dataset. Multimed. Tools Appl. 2017, 76, 21811–21828. [Google Scholar] [CrossRef] [Green Version]
- Hirakawa, K.; Parks, T.W. Adaptive homogeneity-directed demosaicing algorithm. IEEE Trans. Image Process. 2005, 14, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wu, X. Color demosaicking via directional linear minimum mean square-error estimation. IEEE Trans. Image Process. 2005, 14, 2167–2178. [Google Scholar] [CrossRef] [PubMed]
- Menon, D.; Calvagno, G. Color image demosaicking: An overview. Signal Process. Image Commun. 2011, 26, 518–533. [Google Scholar] [CrossRef]
- Mittal, S. A Survey on optimized implementation of deep learning models on the NVIDIA Jetson platform. J. Syst. Archit. 2019, 97, 428–442. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single shot multibox detector. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2016; pp. 21–37. [Google Scholar] [CrossRef] [Green Version]
- Cartucho, J.; Ventura, R.; Veloso, M. Robust object recognition through symbiotic deep learning in mobile robots. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 2336–2341. [Google Scholar] [CrossRef]
Node | nf | gc |
---|---|---|
0–0 | 8 | 4 |
1–0 | 16 | 8 |
2–0 | 32 | 16 |
3–0 | 64 | 32 |
Node | Kernel Size | Input Size | Output Size |
---|---|---|---|
0–0 | - | H × W × 4 | H × W × 8 |
0–1 | 3 × 3 × 16 × 16; 1 × 1 × 16 × 8 | H × W × 16 | H × W × 8 |
0–2 | 3 × 3 × 16 × 16; 1 × 1 × 16 × 8 | H × W × 16 | H × W × 8 |
0–3 | 3 × 3 × 16 × 16; 1 × 1 × 16 × 8 | H × W × 16 | H × W × 8 |
1–0 | - | H × W × 4 | H × W × 16 |
1–1 | 3 × 3 × 32 × 32; 1 × 1 × 32 × 16 | H × W × 32 | H × W × 16 |
1–2 | 3 × 3 × 32 × 32; 1 × 1 × 32 × 16 | H × W × 32 | H × W × 16 |
2–0 | - | H × W × 4 | H × W × 32 |
2–1 | 3 × 3 × 64 × 64; 1 × 1 × 64 × 32 | H × W × 64 | H × W × 32 |
3–0 | - | H × W × 4 | H × W × 64 |
Algorithm | AHD [48] | DLMMSE [49] | RI [5] | MLRI [6] | ARI [7] | Tan [11] | Kok 1 [13] | Cui [14] | Ours(L1) | Ours(L2) | Ours(L3) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Kod | R | 36.88 | 38.47 | 37.83 | 38.87 | 39.11 | 41.11 | 41.30 | 41.98 | 40.29 | 40.88 | 41.22 |
G | 39.59 | 42.65 | 41.03 | 41.86 | 42.33 | 44.86 | 45.96 | 45.10 | 43.44 | 44.00 | 44.34 | |
B | 37.37 | 38.53 | 37.80 | 38.86 | 38.77 | 40.80 | 41.29 | 41.04 | 39.68 | 40.24 | 40.59 | |
RGB | 37.74 | 39.36 | 38.57 | 39.58 | 39.75 | 41.82 | 41.96 | 42.32 | 40.82 | 41.38 | 41.72 | |
McM | R | 33.01 | 33.13 | 36.12 | 36.38 | 37.44 | 38.54 | 39.93 | 39.70 | 36.64 | 37.56 | 38.01 |
G | 36.99 | 38.00 | 40.00 | 39.91 | 40.73 | 41.95 | 42.65 | 42.63 | 39.61 | 40.31 | 40.74 | |
B | 32.16 | 31.84 | 35.37 | 35.38 | 36.07 | 37.14 | 38.00 | 37.72 | 35.25 | 35.90 | 36.33 | |
RGB | 33.50 | 33.55 | 36.50 | 36.65 | 37.54 | 38.67 | 39.67 | 39.45 | 36.75 | 37.48 | 37.91 | |
Urb | R | 32.63 | 33.91 | 33.72 | 36.38 | 34.63 | 37.14 | 38.68 | 37.71 | 35.54 | 36.30 | 36.84 |
G | 35.62 | 37.65 | 36.67 | 39.91 | 38.03 | 40.94 | 42.33 | 41.42 | 39.31 | 39.99 | 40.46 | |
B | 32.87 | 33.92 | 33.90 | 35.38 | 34.79 | 37.13 | 38.54 | 37.70 | 35.59 | 36.30 | 36.90 | |
RGB | 33.42 | 34.73 | 34.48 | 36.65 | 35.49 | 38.00 | 39.47 | 38.56 | 36.44 | 37.16 | 37.70 | |
Man | R | 32.01 | 32.71 | 34.68 | 36.38 | 35.58 | 37.31 | 38.00 | 38.16 | 36.11 | 36.90 | 37.27 |
G | 38.14 | 39.45 | 40.31 | 39.91 | 40.30 | 43.23 | 43.35 | 43.60 | 40.55 | 41.36 | 41.93 | |
B | 33.10 | 33.23 | 35.10 | 35.38 | 35.34 | 37.37 | 36.16 | 37.68 | 35.97 | 36.62 | 37.01 | |
RGB | 33.55 | 34.11 | 35.88 | 36.65 | 36.43 | 38.47 | 38.17 | 39.05 | 37.04 | 37.77 | 38.17 | |
Ave. | R | 33.63 | 34.55 | 35.59 | 37.00 | 36.69 | 38.53 | 39.48 | 39.39 | 37.14 | 37.91 | 38.33 |
G | 37.59 | 39.44 | 39.50 | 40.40 | 40.35 | 42.75 | 43.57 | 43.19 | 40.73 | 41.41 | 41.87 | |
B | 33.88 | 34.38 | 35.54 | 36.25 | 36.24 | 38.11 | 38.50 | 38.54 | 36.62 | 37.27 | 37.71 | |
RGB | 34.55 | 35.44 | 36.36 | 37.38 | 37.30 | 39.24 | 39.82 | 39.84 | 37.76 | 38.45 | 38.88 |
Algorithm | Running Time (s) | Parameters | |
---|---|---|---|
Number | Size (MB) | ||
AHD [48] | 0.48 | - | - |
DLMMSE [49] | 234.78 | - | - |
RI [5] | 0.16 | - | - |
MLRI [6] | 0.20 | - | - |
ARI [7] | 3.66 | - | - |
Tan [11] | 0.42 | 528,518 | 2.02 |
Kokkinos [13] | 0.87 | 380,356 | 1.45 |
Cui [14] | 1.19 | 1,793,032 | 6.84 |
Ours (L1) | 0.14 | 11,786 | 0.04 |
Ours (L2) | 0.17 | 46,537 | 0.18 |
Ours (L3) | 0.24 | 183,628 | 0.70 |
Algorithm | MobileNet v1 | SSD300 | |
---|---|---|---|
Top1 (%) | Top5 (%) | mAP (%) | |
Origin | 71.11 | 89.84 | 75.77 |
AHD [48] | 64.79 | 85.67 | 75.41 |
DLMMSE [49] | 64.06 | 85.44 | 75.14 |
RI [5] | 64.25 | 85.65 | 75.16 |
MLRI [6] | 64.36 | 85.70 | 75.21 |
ARI [7] | 64.40 | 85.74 | 75.06 |
Tan [11] | 65.02 | 86.04 | 75.59 |
Kokkinos [13] | 64.43 | 85.76 | 75.56 |
Cui [14] | 64.50 | 85.80 | 75.49 |
Ours (L1) | 64.11 | 85.49 | 75.16 |
Ours (L2) | 64.43 | 85.78 | 75.22 |
Ours (L3) | 64.56 | 85.83 | 75.44 |
Algorithms | Avg Pooling | Max Pooling | Gaussian Pooling | Gaussian Smoothing | |
---|---|---|---|---|---|
L = 3 | L = 3 | L = 3 | L = 3 | ||
Kodak24 | R | 40.95 | 40.74 | 40.86 | 41.22 |
G | 44.09 | 43.86 | 44.01 | 44.34 | |
B | 40.35 | 40.11 | 40.28 | 40.59 | |
RGB | 41.47 | 41.25 | 41.39 | 41.72 | |
McMaster | R | 37.83 | 37.79 | 37.71 | 38.01 |
G | 40.58 | 40.53 | 40.56 | 40.74 | |
B | 36.07 | 36.03 | 35.97 | 36.33 | |
RGB | 37.70 | 37.66 | 37.61 | 37.91 | |
Urban100 | R | 36.67 | 36.34 | 36.58 | 36.84 |
G | 40.29 | 39.99 | 40.22 | 40.46 | |
B | 36.68 | 36.32 | 36.56 | 36.90 | |
RGB | 37.51 | 37.17 | 37.41 | 37.70 | |
Manga109 | R | 36.93 | 36.72 | 36.90 | 37.27 |
G | 41.53 | 41.30 | 41.54 | 41.93 | |
B | 36.75 | 36.54 | 36.74 | 37.01 | |
RGB | 37.86 | 37.65 | 37.84 | 38.17 | |
Ave. | R | 38.10 | 37.90 | 38.01 | 38.33 |
G | 41.62 | 41.42 | 41.58 | 41.87 | |
B | 37.46 | 37.25 | 37.39 | 37.71 | |
RGB | 38.64 | 38.43 | 38.56 | 38.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Zhao, M.; Dou, R.; Yu, S.; Liu, L.; Wu, N. A Compact High-Quality Image Demosaicking Neural Network for Edge-Computing Devices. Sensors 2021, 21, 3265. https://doi.org/10.3390/s21093265
Wang S, Zhao M, Dou R, Yu S, Liu L, Wu N. A Compact High-Quality Image Demosaicking Neural Network for Edge-Computing Devices. Sensors. 2021; 21(9):3265. https://doi.org/10.3390/s21093265
Chicago/Turabian StyleWang, Shuyu, Mingxin Zhao, Runjiang Dou, Shuangming Yu, Liyuan Liu, and Nanjian Wu. 2021. "A Compact High-Quality Image Demosaicking Neural Network for Edge-Computing Devices" Sensors 21, no. 9: 3265. https://doi.org/10.3390/s21093265