Measuring Gait Stability in People with Multiple Sclerosis Using Different Sensor Locations and Time Scales
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Data Processing
2.4. Statistical Analysis
3. Results
3.1. PwMS vs. Healthy Comparison Group
3.2. PwMS with a Varying Level of Disability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allali, G.; Laidet, M.; Herrmann, F.R.; Armand, S.; Elsworth-Edelsten, C.; Assal, F.; Lalive, P.H. Gait variability in multiple sclerosis: A better falls predictor than EDSS in patients with low disability. J. Neural Transm. 2016, 123, 447–450. [Google Scholar] [CrossRef]
- Huisinga, J.M.; Mancini, M.; George, R.J.S.; Horak, F.B. Accelerometry reveals differences in gait variability between patients with multiple sclerosis and healthy controls. Ann. Biomed. Eng. 2013, 41, 1670–1679. [Google Scholar] [CrossRef] [Green Version]
- Moon, Y.; Wajda, D.A.; Motl, R.W.; Sosnoff, J.J. Stride-Time Variability and Fall Risk in Persons with Multiple Sclerosis. Mult. Scler. Int. 2015, 2015, 964790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peebles, A.T.; Reinholdt, A.; Bruetsch, A.P.; Lynch, S.G.; Huisinga, J.M. Dynamic margin of stability during gait is altered in persons with multiple sclerosis. J. Biomech. 2016, 49, 3949–3955. [Google Scholar] [CrossRef] [Green Version]
- Hilfiker, R.; Vaney, C.; Gattlen, B.; Meichtry, A.; Deriaz, O.; Lugon-Moulin, V.; Anchisi-Bellwald, A.-M.; Palaci, C.; Foinant, D.; Terrier, P. Local dynamic stability as a responsive index for the evaluation of rehabilitation effect on fall risk in patients with multiple sclerosis: A longitudinal study. BMC Res. Notes 2013, 6, 260. [Google Scholar] [CrossRef] [Green Version]
- Lizama, L.E.C.; Bruijn, S.M.; Galea, M.P. Gait stability at early stages of multiple sclerosis using different data sources. Gait Posture 2020, 77, 214–217. [Google Scholar] [CrossRef] [PubMed]
- Reynard, F.; Vuadens, P.; Deriaz, O.; Terrier, P. Could Local Dynamic Stability Serve as an Early Predictor of Falls in Patients with Moderate Neurological Gait Disorders? A Reliability and Comparison Study in Healthy Individuals and in Patients with Paresis of the Lower Extremities. PLoS ONE 2014, 9, e100550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tajali, S.; Mehravar, M.; Negahban, H.; van Dieën, J.H.; Shaterzadeh-Yazdi, M.J.; Mofateh, R. Impaired local dynamic stability during treadmill walking predicts future falls in patients with multiple sclerosis: A prospective cohort study. Clin. Biomech. 2019, 67, 197–201. [Google Scholar] [CrossRef] [Green Version]
- Dingwell, J.B.; Cusumano, J.P.; Cavanagh, P.R.; Sternad, D. Local dynamic stability versus kinematic variability of continuous overground and treadmill walking. J. Biomech. Eng. 2001, 123, 27–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peebles, A.T.; Bruetsch, A.P.; Lynch, S.G.; Huisinga, J.M. Dynamic Balance Is Related to Physiological Impairments in Persons with Multiple Sclerosis. Arch. Phys. Med. Rehabil. 2018, 99, 2030–2037. [Google Scholar] [CrossRef] [PubMed]
- Bruijn, S.M.; Meijer, O.G.; Beek, P.J.; Van Dieen, J.H. Assessing the stability of human locomotion: A review of current measures. J. R. Soc. Interface 2013, 10, 20120999. [Google Scholar] [CrossRef] [PubMed]
- Mehdizadeh, S. The largest Lyapunov exponent of gait in young and elderly individuals: A systematic review. Gait Posture 2018, 60, 241–250. [Google Scholar] [CrossRef]
- Hamacher, D.; Singh, N.B.; Taylor, W.R.; Schega, L. Towards the assessment of local dynamic stability of level-grounded walking in an older population. Med. Eng. Phys. 2015, 37, 1152–1155. [Google Scholar] [CrossRef] [PubMed]
- Kurtzke, J.F. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology 1983, 33, 1444–1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burschka, J.M.; Keune, P.M.; Menge, U.; Hofstadt-van Oy, U.; Oschmann, P.; Hoos, O. An exploration of impaired walking dynamics and fatigue in Multiple Sclerosis. BMC Neurol. 2012, 12, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldman, M.D.; Marrie, R.; Cohen, J.A. Evaluation of the six-minute walk in multiple sclerosis subjects and healthy controls. Mult. Scler. J. 2008, 14, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Leone, C.; Severijns, D.; Doležalová, V.; Baert, I.; Dalgas, U.; Romberg, A.; Bethoux, F.; Gebara, B.; Medina, C.S.; Rasova, K.; et al. Prevalence of walking-related motor fatigue in persons with multiple sclerosis: Decline in walking distance induced by the 6-minute walk test. Neurorehabilit. Neural Repair 2016, 30, 373–383. [Google Scholar] [CrossRef] [Green Version]
- Arpan, I.; Fino, P.C.; Fling, B.W.; Horak, F. Local dynamic stability during long-fatiguing walks in people with multiple sclerosis. Gait Posture 2020, 76, 122–127. [Google Scholar] [CrossRef]
- Sauder, T.; Keune, P.M.; Müller, R.; Schenk, T.; Oschmann, P.; Hansen, S. Trait mindfulness is primarily associated with depression and not with fatigue in multiple sclerosis (MS): Implications for mindfulness-based interventions. BMC Neurol. 2021, 21, 1–7. [Google Scholar] [CrossRef]
- McDonald, W.I.; Compston, A.; Edan, G.; Goodkin, D.; Hartung, H.P.; Lublin, F.D.; McFarland, H.F.; Paty, D.W.; Polman, C.H.; Sandberg-Wollheim, M.; et al. Recommended diagnostic criteria for multiple sclerosis: Guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann. Neurol. Off. J. Am. Neurol. Assoc. Child Neurol. Soc. 2001, 50, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Keune, P.M.; Cocks, A.J.; Young, W.R.; Burschka, J.M.; Hansen, S.; Hofstadt-van Oy, U.; Oschmann, P.; Muenssinger, J. Dynamic walking features and improved walking performance in multiple sclerosis patients treated with fampridine (4-aminopyridine). BMC Neurol. 2015, 15, 171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamacher, D.; Hamacher, D.; Taylor, W.R.; Singh, N.B.; Schega, L. Towards clinical application: Repetitive sensor position re-calibration for improved reliability of gait parameters. Gait Posture 2014, 39, 1146–1148. [Google Scholar] [CrossRef]
- Hamacher, D.; Müller, R.; Schega, L.; Zech, A. Exploring phase dependent functional gait variability. Hum. Mov. Sci. 2017, 52, 191–196. [Google Scholar] [CrossRef]
- Bruijn, S.M.; van Dieën, J.H.; Meijer, O.G.; Beek, P.J. Statistical precision and sensitivity of measures of dynamic gait stability. J. Neurosci. Methods 2009, 178, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Bisi, M.C.; Riva, F.; Stagni, R. Measures of gait stability: Performance on adults and toddlers at the beginning of independent walking. J. Neuroeng. Rehabil. 2014, 11, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamacher, D.; Liebl, D.; Hödl, C.; Heßler, V.; Kniewasser, C.K.; Thönnessen, T.; Zech, A. Gait Stability and Its Influencing Factors in Older Adults. Front. Physiol. 2019, 9, 1955. [Google Scholar] [CrossRef] [PubMed]
- Petersen, E.; Zech, A.; Hamacher, D. Walking barefoot vs. with minimalist footwear – influence on gait in younger and older adults. BMC Geriatr. 2020, 20, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenstein, M.T.; Collins, J.J.; De Luca, C.J. A practical method for calculating largest Lyapunov exponents from small data sets. Phys. D Nonlinear Phenom. 1993, 65, 117–134. [Google Scholar] [CrossRef]
- Rogge, A.K.; Hamacher, D.; Cappagli, G.; Kuhne, L.; Hötting, K.; Zech, A.; Gori, M.; Röder, B. Balance, gait, and navigation performance are related to physical exercise in blind and visually impaired children and adolescents. Exp. Brain Res. 2021, 239, 1111–1123. [Google Scholar] [CrossRef]
- Hollander, K.; Petersen, E.; Zech, A.; Hamacher, D. Effects of barefoot vs. shod walking during indoor and outdoor conditions in younger and older adults. Gait Posture 2021. [Google Scholar] [CrossRef] [PubMed]
- Schroll, A. Der Maximale Lyapunov Exponent—Methodische Beiträge zur Theorie und Anwendung in der Sportwissenschaft. Ph.D. Thesis, Humboldt-Universität, Berlin, Germany, 2020. [Google Scholar]
- Müller, R.; Vielemeyer, J.; Häufle, D.F. Negotiating ground level perturbations in walking: Visual perception and expectation of curb height modulate muscle activity. J. Biomech. 2020, 113. [Google Scholar] [CrossRef]
- Müller, R.; Grimmer, S.; Blickhan, R. Running on uneven ground: Leg adjustments by muscle pre-activation control. Hum. Mov. Sci. 2010, 29, 299–310. [Google Scholar] [CrossRef]
- Haeufle, D.F.; Schmortte, B.; Geyer, H.; Müller, R.; Schmitt, S. The benefit of combining neuronal feedback and feed-forward control for robustness in step down perturbations of simulated human walking depends on the muscle function. Front. Comput. Neurosci. 2018, 12, 80. [Google Scholar] [CrossRef]
- Bruijn, S.M.; Meijer, O.G.; Beek, P.J.; van Dieën, J.H. The effects of arm swing on human gait stability. J. Exp. Biol. 2010, 213, 3945–3952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vielemeyer, J.; Grießbach, E.; Müller, R. Ground reaction forces intersect above the center of mass even when walking down visible and camouflaged curbs. J. Exp. Biol. 2019, 222, jeb.204305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, R.; Rode, C.; Aminiaghdam, S.; Vielemeyer, J.; Blickhan, R. Force direction patterns promote whole body stability even in hip-flexed walking, but not upper body stability in human upright walking. Proc. R. Soc. A Math. Phys. Eng. Sci. 2017, 473, 20170404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Contreras-Reyes, J.E. Analyzing fish condition factor index through skew-gaussian information theory quantifiers. Fluct. Noise Lett. 2016, 15, 1650013. [Google Scholar] [CrossRef]
- Tarnopolski, M. Correlation between the Hurst exponent and the maximal Lyapunov exponent: Examining some low-dimensional conservative maps. Phys. A Stat. Mech. Appl. 2018, 490, 834–844. [Google Scholar] [CrossRef] [Green Version]
- Himann, J.E.; Cunningham, D.A.; Rechnitzer, P.A.; Paterson, D.H. Age-related changes in speed of walking. Med. Sci. Sports Exerc. 1988, 20, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Terrier, P.; Reynard, F. Effect of age on the variability and stability of gait: A cross-sectional treadmill study in healthy indi-viduals between 20 and 69 years of age. Gait Posture 2015, 41, 170–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Healthy | PwMS | p-Value | |
---|---|---|---|
mean ± sd | mean ± sd | ||
Age [years] | 34.7 ± 8.9 | 41.7 ± 11.4 | 0.003 |
Height [cm] | 172.8 ± 8.5 | 170.9 ± 8.1 | 0.368 |
Weight [kg] | 71.7 ± 11.9 | 79.2 ± 18.3 | 0.085 |
Sex [f/m] | 21/9 | 62/24 | 0.827 |
EDSS | 2.00 ± 1.10 | ||
Walking speed [m/s] | |||
begin | 1.68 ± 0.20 | 1.46 ± 0.23 | 0.000 |
mid | 1.66 ± 0.19 | 1.42 ± 0.23 | 0.000 |
end | 1.67 ± 0.17 | 1.42 ± 0.23 | 0.000 |
Stride length [m] | |||
begin | 1.60 ± 0.16 | 1.45 ± 0.17 | 0.000 |
mid | 1.59 ± 0.16 | 1.44 ± 0.17 | 0.000 |
end | 1.60 ± 0.15 | 1.44 ± 0.17 | 0.000 |
Stride time [s] | |||
begin | 0.96 ± 0.06 | 1.00 ± 0.08 | 0.005 |
mid | 0.96 ± 0.06 | 1.02 ± 0.08 | 0.001 |
end | 0.96 ± 0.06 | 1.02 ± 0.08 | 0.000 |
N | 30 | 86 |
Group | Model Estimates | ||||||||
---|---|---|---|---|---|---|---|---|---|
Healthy | PwMS | Intercept | Group | Time | Time2 | Group × Time | Group × Time2 | ||
Trunk | begin | 0.92 ± 0.13 | 0.97 ± 0.16 | b = −0.27 β = 0.92 | b = 0.37 | b = 0.11 | b = −0.17 | b = 0.41 | b = 0.55 |
(short) | mid | 0.92 ± 0.15 | 0.97 ± 0.17 | β = 0.06 | β = 0.02 | β = −0.03 | β = 0.07 | β = 0.09 | |
end | 0.92 ± 0.17 | 0.99 ± 0.15 | p = 0.047 | p = 0.928 | p = 0.891 | p = 0.771 | p = 0.696 | ||
Lumbar spine | begin | 1.01 ± 0.14 | 1.08 ± 0.19 | b = −0.22 β = 1.03 | b = 0.30 | b = 2.08 | b = −0.06 | b = −2.12 | b = 0.14 |
(short) | mid | 1.03 ± 0.16 | 1.08 ± 0.18 | β = 0.05 | β = 0.36 | β = −0.01 | β = −0.37 | β = 0.02 | |
end | 1.05 ± 0.17 | 1.08 ± 0.16 | p = 0.124 | p = 0.039 | p = 0.948 | p = 0.074 | p = 0.907 | ||
Foot | begin | 2.21 ± 0.26 | 2.23 ± 0.28 | b = 0.04 β = 2.21 | b = −0.05 | b = 0.07 | b = −0.27 | b = −1.03 | b = 1.61 |
(short) | mid | 2.22 ± 0.29 | 2.17 ± 0.26 | β = −0.01 | β = 0.02 | β = −0.07 | β = −0.28 | β = 0.43 | |
end | 2.21 ± 0.31 | 2.20 ± 0.25 | p = 0.760 | p = 0.960 | p = 0.837 | p = 0.500 | p = 0.289 | ||
Trunk | begin | 14.09 ± 1.65 | 14.34 ± 1.58 | b = −0.18 β = 13.98 | b = 0.24 | b = −0.73 | b = 0.30 | b = 1.41 | b = −0.40 |
(very short) | mid | 13.93 ± 1.48 | 14.45 ± 2.01 | β = 0.45 | β = −1.39 | β = 0.58 | β = 2.68 | β = −0.77 | |
end | 13.91 ± 1.71 | 14.51 ± 2.05 | p = 0.239 | p = 0.341 | p = 0.694 | p = 0.116 | p = 0.651 | ||
Lumbar spine | begin | 12.24 ± 1.14 | 12.58 ± 1.31 | b = −0.27 β = 12.17 | b = 0.37 | b = 0.21 | b = 1.55 | b = 1.09 | b = −1.35 |
(very short) | mid | 12.01 ± 1.40 | 12.67 ± 1.44 | β = 0.52 | β = 0.30 | β = 2.17 | β = 1.53 | β = −1.90 | |
end | 12.28 ± 1.53 | 12.82 ± 1.38 | p = 0.066 | p = 0.798 | p = 0.066 | p = 0.268 | p = 0.171 | ||
Foot | begin | 13.61 ± 1.10 | 14.44 ± 1.48 | b = −0.50 β = 13.72 | b = 0.68 | b = 0.84 | b = −0.39 | b = 1.68 | b = −0.13 |
(very short) | mid | 13.76 ± 1.30 | 14.76 ± 1.37 | β = 0.99 | β = 1.22 | β = −0.57 | β = 2.45 | β = −0.19 | |
end | 13.78 ± 1.06 | 14.92 ± 1.48 | p < 0.001 | p = 0.304 | p = 0.631 | p = 0.078 | p = 0.893 |
Model Estimates | ||||||
---|---|---|---|---|---|---|
Intercept | EDSS | Time | Time2 | EDSS × Time | EDSS × Time2 | |
Trunk | b = −0.42 | b = 0.21 | b = −0.38 | b = −0.84 | b = 0.41 | b = 0.59 |
(short) | β = 0.91 | β = 0.03 | β = −0.06 | β = −0.14 | β = 0.07 | β = 0.09 |
p = 0.012 | p = 0.772 | p = 0.518 | p = 0.471 | p = 0.306 | ||
Lumbar spine | b = −0.46 | b = 0.23 | b = 0.25 | b = −0.87 | b = −0.14 | b = 0.46 |
(short) | β = 1.00 | β = 0.04 | β = 0.04 | β = −0.15 | β = −0.02 | β = 0.08 |
p = 0.014 | p = 0.825 | p = 0.440 | p = 0.776 | p = 0.346 | ||
Foot | b = −0.22 | b = 0.11 | b = 0.54 | b = 2.25 | b = −0.70 | b = −0.53 |
(short) | β = 2.14 | β = 0.03 | β = 0.15 | β = 0.59 | β = −0.18 | β = −0.14 |
p = 0.210 | p = 0.645 | p = 0.065 | p = 0.188 | p = 0.318 | ||
Trunk | b = −0.30 | b = 0.15 | b = −0.97 | b = −1.00 | b = 0.76 | b = 0.46 |
(very short) | β = 13.83 | β = 0.30 | β = −1.92 | β = −1.99 | β = 1.51 | β = 0.91 |
p = 0.110 | p = 0.184 | p = 0.169 | p = 0.018 | p = 0.150 | ||
Lumbar spine | b = −0.26 | b = 0.13 | b = −1.22 | b = −1.72 | b = 1.17 | b = 0.93 |
(very short) | β = 12.33 | β = 0.18 | β = −1.69 | β = −2.38 | β = 1.62 | β = 1.29 |
p = 0.178 | p = 0.160 | p = 0.049 | p = 0.002 | p = 0.014 | ||
Foot | b = −0.52 | b = 0.26 | b = 0.97 | b = −1.67 | b = 0.60 | b = 0.61 |
(very short) | β = 13.95 | β = 0.38 | β = 1.41 | β = −2.43 | β = 0.87 | β = 0.89 |
p = 0.004 | p = 0.271 | p = 0.059 | p = 0.120 | p = 0.114 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müller, R.; Schreff, L.; Koch, L.-E.; Oschmann, P.; Hamacher, D. Measuring Gait Stability in People with Multiple Sclerosis Using Different Sensor Locations and Time Scales. Sensors 2021, 21, 4001. https://doi.org/10.3390/s21124001
Müller R, Schreff L, Koch L-E, Oschmann P, Hamacher D. Measuring Gait Stability in People with Multiple Sclerosis Using Different Sensor Locations and Time Scales. Sensors. 2021; 21(12):4001. https://doi.org/10.3390/s21124001
Chicago/Turabian StyleMüller, Roy, Lucas Schreff, Lisa-Eyleen Koch, Patrick Oschmann, and Daniel Hamacher. 2021. "Measuring Gait Stability in People with Multiple Sclerosis Using Different Sensor Locations and Time Scales" Sensors 21, no. 12: 4001. https://doi.org/10.3390/s21124001
APA StyleMüller, R., Schreff, L., Koch, L.-E., Oschmann, P., & Hamacher, D. (2021). Measuring Gait Stability in People with Multiple Sclerosis Using Different Sensor Locations and Time Scales. Sensors, 21(12), 4001. https://doi.org/10.3390/s21124001