Triple-Type Feature Extraction for Palmprint Recognition
Abstract
:1. Introduction
- We propose a new palmprint descriptor by extracting triple-type inherent features of palmprint image. Unlike single-type feature descriptor, our proposed method can completely represent the multiple important and inherent characteristics of palmprint images.
- Unlike the recently learning-based methods which require many training samples, our proposed method can effectively extract the discriminative feature manually without requiring any training samples, such that our proposed method is suitable for the few-shot and even zero-shot biometric recognition tasks.
- We conduct both palmprint verification and palmprint identification experiments on three widely used challenging databases and the experimental results demonstrate that our proposed method consistently outperforms previous state-of-the-art methods.
2. Related Work
2.1. Preprocessing of Palmprint Images
2.2. Feature Extraction for Palmprint Representation
2.3. Multiple Feature Fusion
3. Triple-Type Feature Encoding and Matching
3.1. Texture Feature Extraction of Palmprint Images
3.2. Gradient Feature Extraction of Palmprint Images
3.3. Direction Feature Extraction of Palmprint Images
3.4. Feature Matching Fusion
4. Experiment
4.1. Databases
4.2. Palmprint Verification Results
4.3. Palmprint Identification Results
4.4. Parameter Analysis
4.5. Computational Time Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, D. Automated Biometrics: Technologies and Systems; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
- Rida, I.; Máadeed, N.; Máadeed, S.A.; Bakshi, S. A comprehensive overview of feature representation for biometric recognition. Multimed. Tools Appl. 2020, 79, 4867–4890. [Google Scholar] [CrossRef]
- Fei, L.; Zhang, B.; Tian, C.; Teng, S.; Wen, J. Jointly learning multi-instance hand-based biometric descriptor. Inf. Sci. 2021, 562, 1–12. [Google Scholar] [CrossRef]
- Lu, J.; Liong, V.; Zhou, J. Simultaneous local binary feature learning and encoding for homogeneous and heterogeneous face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 1979–1994. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhao, Y.; Liu, G.; Shen, L. Fingerprint pore matching using deep features. Pattern Recognit. 2020, 102, 107208. [Google Scholar] [CrossRef]
- Rida, I.; Máadeed, N.; Máadeed, S. Robust gait recognition: A comprehensive survey. IET Biom. 2019, 8, 14–28. [Google Scholar] [CrossRef]
- Zhang, D.; Kong, W.K.; You, J.; Wong, L.M. Online palmprint identification. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 1041–1050. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Kong, W.K.; You, J.; Wong, L.M. A survey of palmprint recognition. Pattern Recognit. 2009, 42, 1408–1418. [Google Scholar]
- Zhang, D.; Zuo, W.; Yue, F. A comparative study of palmprint recognition algorithms. ACM Comput. Surv. 2012, 44, 1–37. [Google Scholar] [CrossRef]
- Fei, L.; Xu, Y.; Zhang, B.; Fang, X.; Wen, J. Low-rank representation integrated with principal line distance for contactless palmprint recognition. Neurocomputing 2016, 218, 264–275. [Google Scholar] [CrossRef]
- Zhang, L.; Li, L.; Yang, A.; Shen, Y.; Yang, M. Towards contactless palmprint recognition: A novel device, a new benchmark, and a collaborative representation based identification approach. Pattern Recognit. 2017, 69, 199–212. [Google Scholar] [CrossRef]
- Jia, W.; Zhang, B.; Lu, J.; Zhu, Y.; Zhao, Y.; Zuo, W.; Ling, H. Palmprint recognition based on complete direction representation. IEEE Trans. Image Process. 2017, 26, 4483–4498. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zhao, L.; Zhang, B.; Jia, W.; Xue, F.; Lu, J.; Zhu, Y.; Xu, B. Local line directional pattern for palmprint recognition. Pattern Recognit. 2016, 50, 26–44. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, B. Learning complete and discriminative direction pattern for robust palmprint recognition. IEEE Trans. Image Process. 2021, 30, 1001–1014. [Google Scholar] [CrossRef] [PubMed]
- Máadeed, S.; Jiang, X.; Rida, I. Palmprint identification using sparse and dense hybrid representationm. Multimed. Tools Appl. 2019, 78, 5665–5679. [Google Scholar] [CrossRef]
- Rida, I.; Máadeed, S.; Jiang, X.; Fei, L. An Ensemble Learning Method Based on Random Subspace Sampling for Palmprint Identification. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, 12–17 May 2019; pp. 2047–2051. [Google Scholar]
- Fei, L.; Lu, G.; Jia, W.; Teng, S.; Zhang, D. Feature extraction methods for palmprint recognition: A Survey and Evaluation. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 346–363. [Google Scholar] [CrossRef]
- Dai, J.; Feng, J.; Zhou, J. Robust and efficient ridge-based palmprint matching. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 1618–1632. [Google Scholar]
- Fei, L.; Zhang, B.; Jia, W.; Wen, J. Feature extraction for 3-D palmprint recognition: A Survey. IEEE Trans. Instrum. Meas. 2020, 69, 645–656. [Google Scholar] [CrossRef]
- Dai, Q.; Bi, N.; Huang, D. M-band wavelets application to palmprint recognition based on texture features. In Proceedings of the International Conference on Image Processing, Singapore, 24–27 October 2004; pp. 893–896. [Google Scholar]
- Huang, D.S.; Jia, W.; Zhang, D. Palmprint verification based on principal lines. Pattern Recognit. 2008, 41, 1316–1328. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, D.; Wang, K. Palm Line Extraction and Matching for Personal Authentication. IEEE Trans. Syst. Man Cybern. 2006, 36, 978–987. [Google Scholar]
- Kong, A.W.-K.; Zhang, D. Competitive Coding Scheme for Palmprint Verification. In Proceedings of the International Conference on Pattern Recognition, Cambridge, UK, 23–26 August 2004; pp. 520–523. [Google Scholar]
- Guo, Z.; Zhang, D.; Zhang, L. Palmprint verification using binary orientation co-occurrence vector. Pattern Recognit. Lett. 2009, 30, 1219–1227. [Google Scholar] [CrossRef]
- Zhang, L.; Li, H.; Niu, J. Fragile Bits in Palmprint Recognition. IEEE Signal Process. Lett. 2012, 19, 663–666. [Google Scholar] [CrossRef]
- Fei, L.; Xu, Y.; Tang, W. Double-orientation code and nonlinear matching scheme for palmprint recognition. Pattern Recognit. 2016, 49, 89–101. [Google Scholar] [CrossRef]
- Jia, W.; Huang, D.; Zhang, D. Palmprint verification based on robust line orientation code. Pattern Recognit. 2008, 41, 1504–1513. [Google Scholar] [CrossRef]
- Zheng, Q.; Kumar, A.; Pan, G. A 3D feature descriptor recovered from a single 2D palmprint image. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 1272–1279. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Hu, R.X.; Lei, Y.K.; Zhao, Y.; Gui, J. Histogram of oriented lines for palmprint recognition. IEEE Trans. Syst. 2014, 44, 385–395. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, L.; Tan, T. Ordinal feature selection for iris and palmprint recognition. IEEE Trans. Image Process. 2014, 23, 3922–3934. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Zhang, D.; Wang, K. Palmprint recognition using eigenpalms features. Pattern Recognit. Lett. 2003, 24, 1463–1467. [Google Scholar] [CrossRef]
- Rida, I.; Máadeed, S. Palmprint identification using an ensemble of sparse representations. IEEE Access 2018, 6, 3241–3248. [Google Scholar] [CrossRef]
- Rida, I.; Hérault, R.; Marcialis, G.; Gasso, G. Palmprint recognition with an efficient data driven ensemble classifier. Pattern Recognit. Lett. 2019, 126, 21–30. [Google Scholar] [CrossRef]
- Svoboda, J.; Masci, J.; Bronstein, M.M. Palmprint recognition via discriminative index learning. In Proceedings of the International Conference on Pattern Recognition, Cancún, Mexico, 4–8 December 2016; pp. 1–6. [Google Scholar]
- Fei, L.; Zhang, B.; Xu, Y.; Tian, C.; Imad, R.; Zhang, D. Jointly heterogeneous palmprint discriminant feature learning. IEEE Trans. Neural Networks Learn. Syst. 2021, 1–12. [Google Scholar] [CrossRef]
- Genovese, A.; Piuri, V.; Plataniotis, K.; Scotti, F. PalmNet: Gabor-PCA convolutional networks for touchless palmprint recognition. Pattern Recognit. Lett. 2019, 14, 3160–3174. [Google Scholar] [CrossRef] [Green Version]
- Aykut, M.; Ekinci, M. Developing a contactless palmprint authentication system by introducing a novel ROI extraction method. Image Vis. Comput. 2015, 40, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Fei, L.; Zhang, B.; Xu, Y.; Guo, Z.; Wen, J. Learning discriminant direction binary palmprint descriptor. IEEE Trans. Image Process. 2019, 28, 3808–3820. [Google Scholar] [CrossRef]
- Xu, Y.; Fei, L.; Wen, J.; Zhang, D. Discriminative and robust competitive code for palmprint recognition. IEEE Trans. Syst. 2018, 48, 232–241. [Google Scholar] [CrossRef]
- Fei, L.; Zhang, B.; Zhang, W.; Teng, S. Local apparent and latent direction extraction for palmprint recognition. Inf. Sci. 2019, 473, 59–72. [Google Scholar] [CrossRef]
- Fei, L.; Zhang, B.; Zhang, L.; Jia, W.; Wen, J.; Wu, J. Learning compact multifeature codes for palmprint recognition from a single training image per palm. IEEE Trans. Multimed. 2020, 1–13. [Google Scholar] [CrossRef]
- Modak, S.; Jha, V. Multibiometric fusion strategy and its applications: A review. Inf. Fusion 2019, 49, 174–204. [Google Scholar] [CrossRef]
- Poh, N.; Kitler, J. A unified framework for biometric expert fusion incorporating quality measures. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 34, 3–31. [Google Scholar] [CrossRef]
- Jing, X.; Yao, Y.; Zhang, D. Face and palmprint pixel level fusion and kernel DCV-RBF classifier for small sample biometric recognition. Pattern Recognit. 2007, 40, 3209–3224. [Google Scholar] [CrossRef]
- CASIA Palmprint Image Database. Available online: http://biometrics.idealtest.org/ (accessed on 15 January 2005).
- IITD Palmprint Image Database (Version1.0). Available online: http://www4.comp.polyu.edu.hk/~csajaykr/IITD/Database-Palm.htm (accessed on 15 June 2008).
- GPDS Palmprint Image Database. Available online: http://www.gpds.ulpgc.es (accessed on 15 May 2011).
- Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-Scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [Google Scholar] [CrossRef]
- Jabid, T.; Kabir, M.; Chae, O. Robust facial expression recognition based on local direction pattern. ETRJ J. 2010, 32, 784–794. [Google Scholar] [CrossRef]
LBP | LDP | Competitive | Ordinal | HOL | DoN | EBOCV | DRCC | ALDC | TFD | |
---|---|---|---|---|---|---|---|---|---|---|
CASIA | 48.36 | 52.39 | 55.21 | 47.26 | 83.03 | 59.99 | 60.50 | 58.79 | 86.16 | 88.55 |
60.83 | 63.47 | 66.49 | 67.66 | 88.37 | 74.25 | 75.55 | 70.24 | 92.03 | 94.35 | |
71.21 | 72.12 | 79.45 | 75.92 | 92.45 | 80.03 | 82.83 | 78.59 | 93.65 | 95.55 | |
72.30 | 72.65 | 79.27 | 73.26 | 94.87 | 80.37 | 84.06 | 81.45 | 94.64 | 96.88 | |
IITD | 43.64 | 43.87 | 45.92 | 42.25 | 84.88 | 60.71 | 60.73 | 55.81 | 85.07 | 89.04 |
58.33 | 59.62 | 65.16 | 58.77 | 93.19 | 68.12 | 74.31 | 73.44 | 93.53 | 94.97 | |
62.12 | 62.87 | 72.25 | 70.73 | 95.12 | 73.43 | 84.10 | 80.14 | 96.15 | 96.83 | |
64.56 | 64.44 | 79.79 | 76.43 | 96.80 | 80.69 | 87.96 | 85.04 | 97.00 | 97.47 | |
GPDS | 50.23 | 52.74 | 61.73 | 56.18 | 79.35 | 61.16 | 60.56 | 47.77 | 85.53 | 85.55 |
66.12 | 68.33 | 75.88 | 74.68 | 91.37 | 75.78 | 75.60 | 68.70 | 92.85 | 95.30 | |
69.43 | 70.20 | 80.03 | 82.17 | 93.31 | 80.13 | 84.71 | 75.22 | 95.05 | 96.34 | |
70.75 | 70.87 | 86.03 | 85.53 | 96.10 | 85.71 | 87.16 | 81.23 | 97.70 | 98.33 |
Methods | Feature Extraction Time Taken |
---|---|
Competitive | 0.0136 |
Ordinal | 0.0152 |
EBOCV | 0.0201 |
DoN | 0.0102 |
DRCC | 0.21 |
TFD | 0.0225 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.; Xu, Y.; Cui, Z.; Zuo, Y.; Zhao, S.; Fei, L. Triple-Type Feature Extraction for Palmprint Recognition. Sensors 2021, 21, 4896. https://doi.org/10.3390/s21144896
Wu L, Xu Y, Cui Z, Zuo Y, Zhao S, Fei L. Triple-Type Feature Extraction for Palmprint Recognition. Sensors. 2021; 21(14):4896. https://doi.org/10.3390/s21144896
Chicago/Turabian StyleWu, Lian, Yong Xu, Zhongwei Cui, Yu Zuo, Shuping Zhao, and Lunke Fei. 2021. "Triple-Type Feature Extraction for Palmprint Recognition" Sensors 21, no. 14: 4896. https://doi.org/10.3390/s21144896
APA StyleWu, L., Xu, Y., Cui, Z., Zuo, Y., Zhao, S., & Fei, L. (2021). Triple-Type Feature Extraction for Palmprint Recognition. Sensors, 21(14), 4896. https://doi.org/10.3390/s21144896