Low Complexity Hybrid Precoding Designs for Multiuser mmWave/THz Ultra Massive MIMO Systems
Abstract
:1. Introduction
- We propose a hybrid design algorithm with near fully-digital performance, where the digital precoder, analog precoder and multiuser interference mitigation are computed separately through simple closed-form solutions. Even though the hybrid design algorithm is developed independently of a specific channel or antenna configuration, it is particularly suitable for mmWave and THz systems where, on the one hand, very large antenna arrays are required to overcome distance limitations but, on the other hand, current hardware constraints in terms of cost and power consumption make the adoption fully-digital precoders/combiners with one dedicated RF chain per antenna element unviable. Whereas our previous work [10] also proposed a hybrid design algorithm for mmWave, it did not address multiuser systems, and in particular the MIMO broadcast channel. Therefore, it does not include any step for inter-user interference mitigation within its design. As we show here, for this multiuser channel, the hybrid design method must also deal with the residual inter-user interference as it can degrade system performance, particularly at high Signal Noise Ratios (SNRs);
- Due to the separability of the different steps (analog precoder, digital precoder and interference suppression), the proposed algorithm can incorporate different architectures, making it suitable for supporting UM-MIMO in severely hardware-constrained systems typical in the THz band. Unlike [10], where we only considered the adoption of phase shifters, in this paper we present explicit solutions for some of the most common architectures, namely FC, AoSA and DAoSA structures based in either Unquantized Phase Shifters (UPS), Quantized Phase Shifters (QPS), Switches (Swi), Switches and Inverters (SI), Antenna Selection (AS) or Double Phase Shifters (DPS);
- To cope with the large bandwidths available in mmWave/THz bands, where practical MIMO systems likely have to operate in frequency selective channels, the proposed hybrid design considers the application in a multicarrier context, where the same analog precoder is applied at different frequencies;
- We explicitly show how the proposed design can be applied to a DAoSAs approach where a reduced number of switches are inserted at each AoSA panel, which allows the connections to the RF chains to be dynamically adjusted. Through extensive simulations, it is shown that our proposed solution is capable of achieving good trade-offs between spectral efficiency, hardware complexity and power consumption, proving to be a suitable solution for the deployment of UM-MIMO, especially in hardware-constrained THz systems.
2. System Model
3. Proposed Hybrid Design Algorithm
3.1. Main Algorithm
3.2. Analog RF Precoder/Combiner Structure
- (1)
- Unquantized Phase Shifters (UPS)
- (2)
- Quantized Phase Shifters (QPS)
- (3)
- Double Phase Shifters (DPS)
- (4)
- Switches (Swi)
- (5)
- Switches and Inverters (SI)
- (6)
- Antenna Selection (AS)
- (7)
- Array-of-Subarrays (AoSAs)
- (8)
- Dynamic Array-of-Subarrays (DAoSAs)
3.3. Complexity
4. Numerical Results
4.1. Fully-Connected Structures
4.2. Reduced Complexity Architectures
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rappaport, T.S.; Sun, S.; Mayzus, R.; Zhao, H.; Azar, Y.; Wang, K.; Wong, G.; Schulz, J.K.; Samimi, M.; Gutierrez, F. Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! IEEE Access 2013, 1, 335–349. [Google Scholar] [CrossRef]
- Uwaechia, A.N.; Mahyuddin, N.M. A Comprehensive Survey on Millimeter Wave Communications for Fifth-Generation Wireless Networks: Feasibility and Challenges. IEEE Access 2020, 8, 62367–62414. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Kak, A.; Nie, S. 6G and Beyond: The Future of Wireless Communications Systems. IEEE Access 2020, 8, 133995–134030. [Google Scholar] [CrossRef]
- Tan, J.; Dai, T. THz Precoding for 6G: Applications, Challenges, Solutions, and Opportunities. arXiv 2020, arXiv:2005.10752. Available online: https://arxiv.org/abs/2005.10752 (accessed on 2 July 2021).
- Sarieddeen, H.; Alouini, M.-S.; Al-Naffouri, T.Y. An Overview of Signal Processing Techniques for Terahertz Communications. Proc. IEEE 2021, 1–38. [Google Scholar] [CrossRef]
- Lin, C.; Li, G.Y.L. Terahertz Communications: An Array-of-Subarrays Solution. IEEE Commun. Mag. 2016, 54, 124–131. [Google Scholar] [CrossRef]
- Ahmed, I.; Khammari, H.; Shahid, A.; Musa, A.; Kim, K.S.; De Poorter, E.; Moerman, I. A Survey on Hybrid Beamforming Techniques in 5G: Architecture and System Model Perspectives. IEEE Commun. Surv. Tutor. 2018, 20, 3060–3097. [Google Scholar] [CrossRef] [Green Version]
- Chataut, R.; Akl, R. Massive MIMO Systems for 5G and beyond Networks—Overview, Recent Trends, Challenges, and Future Research Direction. Sensors 2020, 20, 2753. [Google Scholar] [CrossRef]
- Sohrabi, F.; Yu, W. Hybrid Digital and Analog Beamforming Design for Large-Scale Antenna Arrays. IEEE J. Sel. Top. Signal Process. 2016, 10, 501–513. [Google Scholar] [CrossRef] [Green Version]
- Souto, N.N.; Silva, J.; Pavia, J.; Ribeiro, M. An alternating direction algorithm for hybrid precoding and combining in millimeter wave MIMO systems. Phys. Commun. 2019, 34, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Pavia, J.P.; Souto, N.; Ribeiro, M.; Silva, J.; Dinis, R. Hybrid Precoding and Combining Algorithm for Reduced Complexity and Power Consumption Architectures in mmWave Communications. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference: VTC2020-Spring, Antwerp, Belgium, 25–28 May 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Guan, K.; Li, G.; Kuerner, T.; Molisch, A.F.; Peng, B.; He, R.; Hui, B.; Kim, J.; Zhong, Z. On Millimeter Wave and THz Mobile Radio Channel for Smart Rail Mobility. IEEE Trans. Veh. Technol. 2016, 66, 5658–5674. [Google Scholar] [CrossRef]
- Alkhateeb, A.; Mo, J.; Gonzalez-Prelcic, N.; Heath, R. MIMO Precoding and Combining Solutions for Millimeter-Wave Systems. IEEE Commun. Mag. 2014, 52, 122–131. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, J.; Letaief, K.B. Alternating minimization for hybrid precoding in multiuser OFDM mmWave systems. In Proceedings of the 2016 50th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 6–9 November 2016; pp. 281–285. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; An, J.; Yang, N.; Yang, K.; Duong, T.Q. Low Complexity Hybrid Precoding for Multiuser Millimeter Wave Systems Over Frequency Selective Channels. IEEE Trans. Veh. Technol. 2018, 68, 983–987. [Google Scholar] [CrossRef]
- Liu, F.; Kan, X.; Bai, X.; Du, R.; Liu, H.; Zhang, Y. Hybrid precoding based on adaptive RF-chain-to-antenna connection for millimeter wave MIMO systems. Phys. Commun. 2020, 39, 100997. [Google Scholar] [CrossRef]
- Xu, K.; Cai, Y.; Zhao, M.; Niu, Y.; Hanzo, L. MIMO-Aided Nonlinear Hybrid Transceiver Design for Multiuser Mmwave Systems Relying on Tomlinson-Harashima Precoding. IEEE Trans. Veh. Technol. 2021, 70, 6943–6957. [Google Scholar] [CrossRef]
- Vizziello, A.; Savazzi, P.; Chowdhury, K.R. A Kalman Based Hybrid Precoding for Multi-User Millimeter Wave MIMO Systems. IEEE Access 2018, 6, 55712–55722. [Google Scholar] [CrossRef]
- Elmagzoub, H.M. On the MMSE-based multiuser millimeter wave MIMO hybrid precoding design. Int. J. Commun. Syst. 2020, 33, e4409. [Google Scholar] [CrossRef]
- Yan, L.; Han, C.; Yuan, J. A Dynamic Array-of-Subarrays Architecture and Hybrid Precoding Algorithms for Terahertz Wireless Communications. IEEE J. Sel. Areas Commun. 2020, 38, 2041–2056. [Google Scholar] [CrossRef]
- Busari, S.; Huq, K.; Mumtaz, S.; Rodriguez, J. Terahertz Massive MIMO for Beyond-5G Wireless Communication. In Proceedings of the ICC 2019-2019 IEEE International Conference on Communications (ICC), Shanghai, China, 11–22 March 2019. [Google Scholar]
- Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Found. Trends Mach. Learn. 2010, 3, 1–122. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, W.; Zeng, J. Global Convergence of ADMM in Nonconvex Nonsmooth Optimization. J. Sci. Comput. 2018, 78, 29–63. [Google Scholar] [CrossRef] [Green Version]
- Alkhateeb, A.; Heath, R.W. Frequency Selective Hybrid Precoding for Limited Feedback Millimeter Wave Systems. IEEE Trans. Commun. 2016, 64, 1801–1818. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; Yang, N.; Yang, K.; Han, C.; An, J. Hybrid Beamforming for Terahertz Multi-Carrier Systems Over Frequency Selective Fading. IEEE Trans. Commun. 2020, 68, 6186–6199. [Google Scholar] [CrossRef]
- Tarboush, S.; Sarieddeen, H.; Chen, H.; Loukil, M.H.; Jemaa, H.; Alouini, M.S.; Al-Naffouri, T.Y. TeraMIMO: A Channel Simulator for Wideband Ultra-Massive MIMO Terahertz Communications. arXiv 2021, arXiv:2104.11054. Available online: https://arxiv.org/abs/2104.11054 (accessed on 2 July 2021).
- Lin, C.; Li, G.Y.; Wang, L. Subarray-Based Coordinated Beamforming Training for mmWave and Sub-THz Communications. IEEE J. Sel. Areas Commun. 2017, 35, 2115–2126. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Le, L.; Le-Ngoc, T.; Heath, R. Hybrid MMSE Precoding and Combining Designs for mmWave Multiuser Systems. IEEE Access 2017, 5, 19167–19181. [Google Scholar] [CrossRef]
- Bertsekas, D. Nonlinear Programming; Athena Scientific: Belmont, MA, USA, 2016. [Google Scholar]
- El Ayach, O.; Rajagopal, S.; Abu-Surra, S.; Pi, Z.; Jr, R.W.H. Spatially Sparse Precoding in Millimeter Wave MIMO Systems. IEEE Trans. Wirel. Commun. 2014, 13, 1499–1513. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Shen, J.-C.; Zhang, J.; Letaief, K.B. Alternating Minimization Algorithms for Hybrid Precoding in Millimeter Wave MIMO Systems. IEEE J. Sel. Top. Signal Process. 2016, 10, 485–500. [Google Scholar] [CrossRef] [Green Version]
- Spencer, Q.; Swindlehurst, A.L.; Haardt, M. Zero-Forcing Methods for Downlink Spatial Multiplexing in Multiuser MIMO Channels. IEEE Trans. Signal Process. 2004, 52, 461–471. [Google Scholar] [CrossRef]
- Mendez-Rial, R.; Rusu, C.; Gonzalez-Prelcic, N.; Alkhateeb, A.; Heath, R. Hybrid MIMO Architectures for Millimeter WaveCommunications: Phase Shifters or Switches? IEEE Access 2016, 4, 247–267. [Google Scholar] [CrossRef]
- Lee, J.; Lee, Y.H. AF relaying for millimeter wave communication systems with hybrid RF/baseband MIMO processing. In Proceedings of the 2014 IEEE International Conference on Communications (ICC), Sydney, Australia, 10–14 June 2014; pp. 5838–5842. [Google Scholar] [CrossRef]
- Payami, S.; Ghoraishi, M.; Dianati, M.; Sellathurai, M. Hybrid Beamforming with a Reduced Number of Phase Shifters for Massive MIMO Systems. IEEE Trans. Veh. Technol. 2018, 67, 4843–4851. [Google Scholar] [CrossRef] [Green Version]
- Tian, M.; Zhang, J.; Zhao, Y.; Yuan, L.; Yang, J.; Gui, G. Switch and Inverter Based Hybrid Precoding Algorithm for mmWave Massive MIMO System: Analysis on Sum-Rate and Energy-Efficiency. IEEE Access 2019, 7, 49448–49455. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, J.; Letaief, K.B. Doubling Phase Shifters for Efficient Hybrid Precoder Design in Millimeter-Wave Communication Systems. J. Commun. Inform. Netw. 2019, 4, 51–67. [Google Scholar]
- Yan, L.; Han, C.; Yang, N.; Yuan, J. Dynamic-subarray with Quantized- and Fixed-phase Shifters for Terahertz Hybrid Beamforming. In Proceedings of the GLOBECOM 2020-2020 IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, C.; Lu, I.-T.; Jia, X. Hybrid Precoding Using Out-of-Band Spatial Information for Multi-User Multi-RF-Chain Millimeter Wave Systems. IEEE Access 2020, 8, 50872–50883. [Google Scholar] [CrossRef]
- Park, S.; Alkhateeb, A.; Heath, R.W., Jr. Dynamic Subarrays for Hybrid Precoding in Wideband mmWave MIMO Systems. IEEE Trans. Wirel. Commun. 2017, 16, 2907–2920. [Google Scholar] [CrossRef]
- Tan, J.; Dai, L. Delay-Phase Precoding for THz Massive MIMO with Beam Split. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Big Island, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
1: Input: , , , , , , ρ, Q |
2: for t = 0, 1, …, Q − 1 do |
3: Compute using (21). |
4: Compute using (24), for all k = 1, …, F. |
5: Compute using (25). |
6: Compute using (26), for all k = 1, …, F. |
7: Compute using (28), for all k = 1, …, F and u = 1, …, Nu. |
8: Update using (33). |
9: Update using (34), for all k = 1, …, F. |
10: Update using (35), for all k = 1, …, F. |
11: end for. |
12: . |
13: , for all k = 1, …, F. |
14: . |
15: Output: , . |
AM—Based | |
Operation | Complexity Order |
Overall [15] | |
LASSO—Based Alt-Min (SPS) | |
Operation | Complexity Order |
Overall [14] | |
ADMM | |
Operation | Complexity Order |
Overall [10] | |
EBE | |
Operation | Complexity Order |
Overall [20] | |
Proposed | |
Operation | Complexity Order |
R | |
B | |
U, W, Z | |
Overall |
Precoder | Estimated Power Consumption [W] | |
---|---|---|
Fully-Connected | DPS | 428.04 |
UPS | 223.24 | |
QPS (Nb = 2) | 59.4 | |
QPS (Nb = 3) | 100.36 | |
SWI | 67.59 | |
SI | 38.92 | |
DAoSA SPS | Lmax = 1 | 28.87 |
Lmax = 2 | 39.30 | |
Lmax = 3 | 49.73 | |
Lmax = 4 | 60.17 | |
DAoSA DPS | Lmax = 1 | 39.11 |
Lmax = 2 | 59.78 | |
Lmax = 3 | 80.45 | |
Lmax = 4 | 101.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavia, J.P.; Velez, V.; Ferreira, R.; Souto, N.; Ribeiro, M.; Silva, J.; Dinis, R. Low Complexity Hybrid Precoding Designs for Multiuser mmWave/THz Ultra Massive MIMO Systems. Sensors 2021, 21, 6054. https://doi.org/10.3390/s21186054
Pavia JP, Velez V, Ferreira R, Souto N, Ribeiro M, Silva J, Dinis R. Low Complexity Hybrid Precoding Designs for Multiuser mmWave/THz Ultra Massive MIMO Systems. Sensors. 2021; 21(18):6054. https://doi.org/10.3390/s21186054
Chicago/Turabian StylePavia, João Pedro, Vasco Velez, Renato Ferreira, Nuno Souto, Marco Ribeiro, João Silva, and Rui Dinis. 2021. "Low Complexity Hybrid Precoding Designs for Multiuser mmWave/THz Ultra Massive MIMO Systems" Sensors 21, no. 18: 6054. https://doi.org/10.3390/s21186054
APA StylePavia, J. P., Velez, V., Ferreira, R., Souto, N., Ribeiro, M., Silva, J., & Dinis, R. (2021). Low Complexity Hybrid Precoding Designs for Multiuser mmWave/THz Ultra Massive MIMO Systems. Sensors, 21(18), 6054. https://doi.org/10.3390/s21186054