Quantitatively Recognizing Stimuli Intensity of Primary Taste Based on Surface Electromyography
Abstract
:1. Introduction
2. Material and Methods
2.1. Data Acquisition
- (1)
- An experiment assistant checked the sEMG acquisition system.
- (2)
- The subject was asked to clean their face and the assistant checked that the subject was conscious and reported no diseases, medications, or other conditions associated with taste disorders.
- (3)
- The subject was asked to relax, and the assistant pasted electrodes on the face of the subject according to Figure 2.
- (4)
- The subject was asked to close their eyes. Then the assistant added 2 mL of the tastant solution to a new 35 mm diameter petri dish and soaked a piece of filter paper in the solution for 1 min.
- (5)
- The assistant put the filter paper on the tip of the subject’s tongue. The size and position of the filter paper are shown in Figure 3. The subject closed their mouth, keeping their tongue still. When the subject stopped moving their tongue or mouth and the signal baseline tended to be stable, the assistant started the device to get sEMG of the bitter taste for 12 s. During the 12 s, the subject was asked not to deliberately control their facial expression or to think about anything but the taste experience.
- (6)
- The subject gargled five times, taking 20 mL purified water each time.
- (7)
- The subject recorded the taste intensity score for the taste in step 5.
- (8)
- Steps 4 to 7 were repeated five times with the other five solutions of different concentrations.
- (9)
- The subject summarized scores and gave final scores for 6 types of solutions with different concentrations. The score was the evaluation of the taste intensity. If the subject considered the solution in a trial to be deionized water, the score should be 0 and if the subject considered that the solution in a trial had the strongest intensity, the score should be 10.
- (10)
- The subject took a break for two minutes.
- (11)
- Steps 4 to 10 were repeated four times with the other 4 solution serials of different primary tastes.
- (12)
- If there was another session, the subject took a break for 10 min. Then, steps 4 to 11 were repeated.
2.2. Preprocessing
2.3. Feature Extraction
2.4. Regression
3. Results and Discussion
3.1. Regression Result
3.2. Facial Expression Differences
3.3. Feature Dimensionality Reduction
3.4. Model Performance on Different Subjects
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Yarmolinsky, D.A.; Zuker, C.S.; Ryba, N.J.P. Common sense about taste: From mammals to insects. Cell 2009, 139, 234–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Podrażka, M.; Bączyńska, E.; Kundys, M.; Jeleń, P.S.; Witkowska Nery, E. Electronic tongue-A tool for all tastes? Biosensors 2018, 8, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cetó, X.; González-Calabuig, A.; Crespo, N.; Pérez, S.; Capdevila, J.; Puig-Pujol, A.; Del Valle, M. Electronic tongues to assess wine sensory descriptors. Talanta 2017, 162, 218–224. [Google Scholar] [CrossRef]
- Dias, L.G.; Alberto, Z.; Veloso, A.C.A.; Peres, A.M. Electronic tongue: A versatile tool for mineral and fruit-flavored waters recognition. J. Food Meas. Charact. 2016, 10, 264–273. [Google Scholar] [CrossRef] [Green Version]
- Lenik, J.; Wesoły, M.; Ciosek, P.; Wróblewski, W. Evaluation of taste masking effect of diclofenac using sweeteners and cyclodextrin by a potentiometric electronic tongue. J. Electroanal. Chem. 2016, 780, 153–159. [Google Scholar] [CrossRef]
- Tahirbegi, I.B.; Alvira, M.; Mir, M.; Samitier, J. Simple and fast method for fabrication of endoscopic implantable sensor arrays. Sensors 2014, 14, 11416–11426. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Hu, X.; Zhu, Z. Biomimetic sensors and biosensors for qualitative and quantitative analyses of five basic tastes. Trends Anal. Chem. 2017, 87, 58–70. [Google Scholar] [CrossRef]
- Toyota, K.; Cui, H.; Abe, K.; Habara, M.; Toko, K.; Ikezaki, H. Sweetness sensor with lipid/polymer membranes: Sweet-responsive substances. Sens. Mater. 2011, 23, 465–474. [Google Scholar]
- Hui, G.; Mi, S.; Chen, Q.; Chen, X. Sweet and bitter tastant discrimination from complex chemical mixtures using taste cell-based sensor. Sens. Actuators B Chem. 2014, 192, 361–368. [Google Scholar] [CrossRef]
- Gil, D.M.A.; Rebelo, M.J.F. Evaluating the antioxidant capacity of wines: A laccase-based biosensor approach. Eur. Food Res. technology 2010, 231, 303–308. [Google Scholar] [CrossRef]
- Cheok, A.D.; Karunanayaka, K. Virtual Taste and Smell Technologies for Multisensory Internet and Virtual Reality; Spring International Publishing AG: Cham, Switzerland, 2018; pp. 119–122. [Google Scholar]
- Ranasinghe, N.; Nguyen, T.N.T.; Liangkun, Y.; Lin, L.-Y.; Tolley, D. Vocktail: A virtual cocktail for pairing digital taste, smell, and color sensations. In Proceedings of the 2017 ACM Multimedia Conference, Mountain View, CA, USA, 23–27 October 2017. [Google Scholar]
- Karunanayaka, K.; Johari, N.; Hariri, S.; Camelia, H.; Bielawski, K.S.; Cheok, A.D. New thermal taste actuation technology for future multisensory virtual reality and internet. IEEE Trans. Vis. Comput. Graph. 2018, 24, 1496–1505. [Google Scholar] [CrossRef]
- Miyashita, H. Norimaki Synthesizer: Taste Display Using Ion Electrophoresis in Five Gels. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology, Minneapolis, MN, USA, 20–23 October 2020. [Google Scholar]
- Vidal, J.J. Toward direct brain-computer communication. Annu. Rev. Biophys. Bioeng. 1973, 2, 157–180. [Google Scholar] [CrossRef]
- Mudgal, S.K.; Sharma, S.K.; Chaturvedi, J.; Sharma, A. Brain computer interface advancement in neurosciences: Applications and issues. Interdiscip. Neurosurg. Adv. Tech. Case Manag. 2020, 20, 100694. [Google Scholar] [CrossRef]
- Canna, A.; Prinster, A.; Cantone, E.; Ponticorvo, S.; Russo, A.G.; Di Salle, F.; Esposito, F. Intensity-related distribution of sweet and bitter taste fMRI responses in the insular cortex. Hum. Brain Mapp. 2019, 40, 3631–3646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizoguchi, C.; Kobayakawa, T.; Saito, S.; Ogawa, H. Gustatory evoked cortical activity in humans studied by simultaneous EEG and MEG recording. Chem. Senses 2002, 27, 629–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Yao, L.; Chen, K.; Wang, S.; Chang, X.; Liu, Y. Making Sense of Spatio-Temporal Preserving Representations for EEG-Based Human Intention Recognition. IEEE Trans. Cybern. 2020, 50, 3033–3044. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, Y.; Cui, W.G.; Guo, Y.Z.; Huang, H.; Hu, Z.Y. Epileptic Seizure Detection in EEG Signals Using a Unified Temporal-Spectral Squeeze-and-Excitation Network. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 782–794. [Google Scholar] [CrossRef]
- Halim, Z.; Rehan, M. On identification of driving-induced stress using electroencephalogram signals: A framework based on wearable safety-critical scheme and machine learning. Inf. Fusion 2020, 53, 66–79. [Google Scholar] [CrossRef]
- Wallroth, R.; Höchenberger, R.; Ohla, K. Delta activity encodes taste information in the human brain. NeuroImage 2018, 181, 471–479. [Google Scholar] [CrossRef]
- Kaneko, D.; Hogervorst, M.; Toet, A.; Van Erp, J.B.F.; Kallen, V.; Brouwer, A.M. Explicit and implicit responses to tasting drinks associated with different tasting experiences. Sensors 2019, 19, 4397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abidi, I.; Farooq, O.; Beg, M.M.S. Sweet and sour taste classification using EEG based brain computer interface. In Proceedings of the 2015 Annual IEEE India Conference (INDICON), New Delhi, India, 17–20 December 2015. [Google Scholar]
- Andersen, C.A.; Kring, M.L.; Andersen, R.H.; Larsen, O.N.; Kjaer, T.W.; Kidmose, U.; Møller, S.; Kidmose, P. EEG discrimination of perceptually similar tastes. J. Neurosci. Res. 2019, 97, 241–252. [Google Scholar] [CrossRef] [PubMed]
- Yadav, D.; Yadav, S.; Veer, K. A comprehensive assessment of Brain Computer Interfaces: Recent trends and challenges. J. Neurosci. Methods 2020, 346, 108918. [Google Scholar] [CrossRef] [PubMed]
- Del Vecchio, A.; Negro, F.; Felici, F.; Farina, D. Associations between motor unit action potential parameters and surface EMG features. J. Appl. Physiol. 2017, 123, 835–843. [Google Scholar] [CrossRef] [PubMed]
- Nasri, N.; Orts-Escolano, S.; Gomez-Donoso, F.; Cazorla, M. Inferring static hand poses from a low-cost non-intrusive sEMG sensor. Sensors 2019, 19, 371. [Google Scholar] [CrossRef] [Green Version]
- Kaczmarek, P.; Mankowski, T.; Tomczynski, J. putEMG-A surface electromyography hand gesture recognition dataset. Sensors 2019, 19, 3548. [Google Scholar] [CrossRef] [Green Version]
- Nasri, N.; Orts-Escolano, S.; Cazorla, M. An semg-controlled 3d game for rehabilitation therapies: Real-time time hand gesture recognition using deep learning techniques. Sensors 2020, 20, 6451. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Wu, R.; Gao, H.; Yang, M.; Luo, Z.; Li, G. Silent speech decoding using spectrogram features based on neuromuscular activities. Brain Sci. 2020, 10, 442. [Google Scholar] [CrossRef]
- Sato, W.; Minemoto, K.; Ikegami, A.; Nakauma, M.; Funami, T.; Fushiki, T. Facial EMG correlates of subjective hedonic responses during food consumption. Nutrients 2020, 12, 1174. [Google Scholar] [CrossRef] [Green Version]
- Miura, Y.; Morita, Y.; Koizumi, H.; Shingai, T. Effects of Taste Solutions, Carbonation, and Cold Stimulus on the Power Frequency Content of Swallowing Submental Surface Electromyography. Chem. Senses 2009, 34, 325–331. [Google Scholar] [CrossRef] [Green Version]
- Manda, Y.; Kodama, N.; Maeda, N.; Minagi, S. Effect of food properties and chewing condition on the electromyographic activity of the posterior tongue. J. Oral Rehabil. 2019, 46, 511–517. [Google Scholar] [CrossRef]
- Perusquia-Hernandez, M.; Hirokawa, M.; Suzuki, K. A Wearable Device for Fast and Subtle Spontaneous Smile Recognition. IEEE Trans. Affect. Comput. 2017, 8, 522–533. [Google Scholar] [CrossRef]
- Kulke, L.; Feyerabend, D.; Schacht, A. A Comparison of the Affectiva iMotions Facial Expression Analysis Software With EMG for Identifying Facial Expressions of Emotion. Front. Psychol. 2020, 11, 329. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Player, K.A.; Mcchesney, K.A.; Dalistan, M.D.; Tyner, C.A.; Scozzafava, J.E. Facial EMG as an indicator of palatability in humans. Physiol. Behav. 1999, 68, 31–35. [Google Scholar] [CrossRef]
- Horio, T. EMG activities of facial and chewing muscles of human adults in response to taste stimuli. Percept. Mot. Ski. 2003, 97, 289–298. [Google Scholar] [CrossRef]
- Armstrong, J.E.; Hutchinson, I.; Laing, D.G.; Jinks, A.L. Facial electromyography: Responses of children to odor and taste stimuli. Chem. Senses 2007, 32, 611–621. [Google Scholar] [CrossRef] [Green Version]
- Kurihara, K. Glutamate: From discovery as a food flavor to role as a basic taste (umami). Am. J. Clin. Nutr. 2009, 90, 719S–722S. [Google Scholar] [CrossRef]
- Fasano, A.; Villani, V. Baseline wander removal for bioelectrical signals by quadratic variation reduction. Signal Process. 2014, 99, 48–57. [Google Scholar] [CrossRef]
- Tavakolan, M.; Frehlick, Z.; Yong, X.; Menon, C. Classifying three imaginary states of the same upper extremity using time-domain features. PLoS ONE 2017, 12, e0174161. [Google Scholar] [CrossRef]
- Al-Faiz, M.Z.; Al-hamadani, A.A. Implementation of EEG Signal Processing and Decoding for Two-class Motor Imagery Data. Biomed. Eng. Appl. Basis Commun. 2019, 31, 1950028. [Google Scholar] [CrossRef]
- Phinyomark, A.; Khushaba, R.N.; Scheme, E. Feature extraction and selection for myoelectric control based on wearable EMG sensors. Sensors 2018, 18, 1615. [Google Scholar] [CrossRef] [Green Version]
- Castroflorio, T.; Farina, D.; Bottin, A.; Piancino, M.G.; Bracco, P.; Merletti, R. Surface EMG of jaw elevator muscles: Effect of electrode location and inter-electrode distance. J. Oral Rehabil. 2005, 32, 411–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merletti, R.; Muceli, S. Tutorial. Surface EMG detection in space and time: Best practices. J. Electromyogr. Kinesiol. 2019, 49, 102363. [Google Scholar] [CrossRef] [PubMed]
C | Electrode Type | Muscle | Detailed Position * |
---|---|---|---|
1 | Differential electrode pair | Right masseter | From the lower end of the right ear cartilage, 3 cm forward. |
2 | Differential electrode pair | Right depressor anguli oris | Below the right corner of the mouth |
3 | Single electrode | Right levator labii superioris | 1 cm over the upper lip and tangent to the right alar of the nose. |
4 | Single electrode | Left risorius | From the left corner of the mouth, 1 cm to the left |
5 | Single electrode | Procerus | From the midpoint of the line between the two inner ends of the eyebrows, 2 cm upward. |
6 | Single electrode | Left masseter | From the lower end of the left ear cartilage, 3 cm forward. |
B | Bias electrode | Left mastoid | The protuberance behind the left ear |
R | Reference electrode | Right mastoid | The protuberance behind the right ear |
Taste Type | Tastant (aq *) | Concentration (mol/L) for Different Strength Label | |||||
---|---|---|---|---|---|---|---|
5 | 4 | 3 | 2 | 1 | 0 | ||
Sour | Citric acid | 0.200 | 0.063 | 0.020 | 0.006 | 0.002 | 0 |
Sweet | Sucrose | 1.000 | 0.316 | 0.100 | 0.032 | 0.010 | 0 |
Bitter | Magnesium chloride | 1.000 | 0.316 | 0.100 | 0.032 | 0.010 | 0 |
Salty | Sodium chloride | 2.000 | 0.632 | 0.200 | 0.063 | 0.020 | 0 |
Umami | Sodium glutamate | 1.000 | 0.316 | 0.100 | 0.032 | 0.010 | 0 |
Strength Label | Relative Concentration | Sour | Sweet | Bitter | Salty | Umami |
---|---|---|---|---|---|---|
5 | 1 | 479 | 455 | 468 | 465 | 451 |
4 | 0.316 | 452 | 474 | 450 | 475 | 460 |
3 | 0.1 | 459 | 462 | 474 | 453 | 466 |
2 | 0.0316 | 469 | 478 | 466 | 481 | 454 |
1 | 0.01 | 474 | 477 | 471 | 458 | 452 |
0 | 0 | 475 | 454 | 467 | 467 | 467 |
All | 2808 | 2800 | 2796 | 2799 | 2750 |
Label Type | Sour | Sweet | Bitter | Salty | Umami |
---|---|---|---|---|---|
Strength label | 0.7277 | 0.1963 | 0.7450 | 0.7642 | 0.5055 |
Relative concentration | 0.7050 | -0.0590 | 0.6039 | 0.5000 | 0.2446 |
Scale score | 0.6506 | 0.2164 | 0.6986 | 0.6950 | 0.2721 |
Channel Index | Reserved Feature Index | Reserved Features |
---|---|---|
1 | 1–15 36–40 46–50 | The spectrum from 0 to 149 Hz; The spectrum from 350 to 399 Hz; The spectrum from 450 to 499 Hz |
2 | 1–40 46–50 | The spectrum from 0 to 399 Hz; The spectrum from 450 to 499 Hz |
3 | 11–15 21–50 | The spectrum from 100 to 149 Hz; The spectrum from 200 to 499 Hz |
4 | 11–20 26–50 | The spectrum from 100 to 199 Hz; The spectrum from 250 to 499 Hz |
5 | 1–50 51–55 | The spectrum from 0 to 499 Hz FC, RMSF, RVF, RMS, MAV |
6 | 31–40 51–55 | The spectrum from 300 to 399 Hz FC, RMSF, RVF, RMS, MAV |
Taste Type | R2 Score before FDR * | FD * for Each Channel after FDR | Total FD after FDR | R2 Score after FDR | |||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||||
Sour | 0.7277 | 25 | 45 | 35 | 35 | 55 | 15 | 210 | 0.7582 |
Sweet | 0.1693 | 15 | 5 | 30 | 10 | 55 | 5 | 120 | 0.2272 |
Bitter | 0.7450 | 40 | 45 | 25 | 30 | 40 | 30 | 210 | 0.7603 |
Salty | 0.7642 | 35 | 55 | 55 | 55 | 55 | 5 | 260 | 0.7793 |
Umami | 0.5055 | 30 | 20 | 40 | 5 | 45 | 30 | 170 | 0.5187 |
Subject Index | Sour | Sweet | Bitter | Salty | Umami |
---|---|---|---|---|---|
1 | 2808 | 2800 | 2796 | 2799 | 2750 |
2 | 2801 | 2806 | 2837 | 2800 | 2863 |
3 | 2822 | 2804 | 2808 | 2811 | 2760 |
4 | 2757 | 2779 | 2771 | 2771 | 2768 |
5 | 2758 | 2779 | 2748 | 2769 | 2773 |
All | 13,946 | 13,968 | 13,960 | 13,950 | 13,914 |
Subject Index | Sour | Sweet | Bitter | Salty | Umami |
---|---|---|---|---|---|
1 | 0.7554 | 0.1770 | 0.7607 | 0.7729 | 0.5384 |
2 | 0.4960 | 0.1132 | 0.6215 | 0.3062 | 0.3196 |
3 | 0.5405 | 0.0294 | 0.5794 | 0.4819 | 0.1213 |
4 | 0.6931 | 0.2690 | 0.4470 | 0.5031 | 0.3742 |
5 | 0.5032 | 0.1150 | 0.4308 | 0.4605 | 0.3178 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Lu, D.; Liu, L.; Gao, H.; Wu, R.; Zhou, Y.; Ai, Q.; Wang, Y.; Li, G. Quantitatively Recognizing Stimuli Intensity of Primary Taste Based on Surface Electromyography. Sensors 2021, 21, 6965. https://doi.org/10.3390/s21216965
Wang H, Lu D, Liu L, Gao H, Wu R, Zhou Y, Ai Q, Wang Y, Li G. Quantitatively Recognizing Stimuli Intensity of Primary Taste Based on Surface Electromyography. Sensors. 2021; 21(21):6965. https://doi.org/10.3390/s21216965
Chicago/Turabian StyleWang, Hengyang, Dongcheng Lu, Li Liu, Han Gao, Rumeng Wu, Yueling Zhou, Qing Ai, You Wang, and Guang Li. 2021. "Quantitatively Recognizing Stimuli Intensity of Primary Taste Based on Surface Electromyography" Sensors 21, no. 21: 6965. https://doi.org/10.3390/s21216965
APA StyleWang, H., Lu, D., Liu, L., Gao, H., Wu, R., Zhou, Y., Ai, Q., Wang, Y., & Li, G. (2021). Quantitatively Recognizing Stimuli Intensity of Primary Taste Based on Surface Electromyography. Sensors, 21(21), 6965. https://doi.org/10.3390/s21216965