Color Index of Transformer Oil: A Low-Cost Measurement Approach Using Ultraviolet-Blue Laser
Abstract
:1. Introduction
- Utilization of a single-wavelength laser diode in the UV-blue wavelength for color index measurement of transformer oil was established.
- Mathematical models were developed and validated to correlate the output power with the color index in accordance with ASTM D1500.
2. Experimental Details
3. Results and Discussion
4. Conclusions
- A detailed study on the effect of optical pathlength variation and more accurate color index measurement.
- An investigation of the optimum laser power required for a particular color index to ensure that transformer oil with the full range of the color index can be measured.
- Due to the variations of optical pathlengths and optimum laser powers, a machine learning-based model can be developed to more accurately model the color index of transformer oil based on multiple inputs.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jan, S.T.; Afzal, R.; Khan, A.Z. Transformer Failures, Causes & Impact. In Proceedings of the International Conference Data Mining, Civil and Mechanical Engineering (ICDMCME’2015), Bali, Indonesia, 1–2 February 2015; pp. 49–52. [Google Scholar] [CrossRef] [Green Version]
- Alshehawy, A.M.; Mansour, D.E.A.; Rezk, A.; Ghali, M. Impact of thermal aging of transformer oil on UV-Vis optical spectrum and dielectric properties. In Proceedings of the 2016 Eighteenth International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 27–29 December 2016; pp. 860–865. [Google Scholar] [CrossRef]
- Karmakar, S.; Roy, N.K.; Kumbhakar, P. Effect of ageing in transformer oil using UV-visible spectrophotometeric technique. J. Opt. 2011, 40, 33–38. [Google Scholar] [CrossRef]
- Kalathiripi, H.; Karmakar, S. Analysis of transformer oil degradation due to thermal stress using optical spectroscopic techniques. Int. Trans. Electr. Energy Syst. 2017, 27, 1–11. [Google Scholar] [CrossRef]
- Sylvestre N’cho, J.; Fofana, I.; Hadjadj, Y.; Beroual, A. Review of physicochemical-based diagnostic techniques for assessing insulation condition in aged transformers. Energies 2016, 9, 367. [Google Scholar] [CrossRef]
- Totani, N.; Tateishi, S.; Chiue, H.; Mori, T. Color and chemical properties of oil used for deep frying on a large scale. J. Oleo Sci. 2012, 61, 121–126. [Google Scholar] [CrossRef] [Green Version]
- ASTM International United States. ASTM International United States Standard Test Method for ASTM Color of Petroleum Products (ASTM Color Scale) 1. Annu. B. ASTM Stand. 2011, 5, 1–5. [Google Scholar] [CrossRef]
- Fernandes, S.S.; Tonato, D.; Mazutti, M.A.; de Abreu, B.R.; da Costa Cabrera, D.; D’Oca, C.D.R.M.; Prentice-Hernández, C.; Salas-Mellado, M.D.L.M. Yield and quality of chia oil extracted via different methods. J. Food Eng. 2019, 262, 200–208. [Google Scholar] [CrossRef]
- Sulaiman, N.S.; Mohd-Yusof, K.; Mohd-Saion, A. Quality prediction modeling of palm oil refining plant in Malaysia using artificial neural network models. Int. J. Eng. Technol. 2018, 7, 19–22. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Zheng, L.; Jin, J.; Li, X.; Fu, J.; Wang, M.; Guan, Y.; Song, X. Physicochemical and biological characteristics of Mexican chia seed oil. Molecules 2018, 23, 3219. [Google Scholar] [CrossRef] [Green Version]
- Timilsena, Y.P.; Vongsvivut, J.; Adhikari, R.; Adhikari, B. Physicochemical and thermal characteristics of Australian chia seed oil. Food Chem. 2017, 228, 394–402. [Google Scholar] [CrossRef]
- El-Naggar, E.A. Physicochemical Characteristics of Tiger Nut Tuber (Cyperus esculentus Lam) Oil. Middle East J. Appl. Sci. 2016, 6, 1003–1011. [Google Scholar]
- Leong, Y.S.; Ker, P.J.; Jamaludin, M.Z.; Nomanbhay, S.M.; Ismail, A.; Abdullah, F.; Looe, H.M.; Lo, C.K. UV-vis spectroscopy: A new approach for assessing the color index of transformer insulating oil. Sensors 2018, 18, 2175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sing, L.Y.; Ker, P.J.; Jamaludin, M.Z.; Ismail, A.; Abdullah, F.; Mun, L.H.; Saniyyat, C.N.; Shukri, M. Determining the inhibitor content of transformer insulating oil using UV-Vis spectroscopy. In Proceedings of the 2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), Penang, Malaysia, 25–27 November 2016; pp. 179–183. [Google Scholar] [CrossRef]
- Muzzio, C.R.; Díaz, R.J.; Dini, N.G. In-line measurement of sunflower oil color in the Lovibond scale using a low-cost robust device. J. Food Eng. 2014, 120, 88–93. [Google Scholar] [CrossRef]
- Liaotrakoon, W.; Namhong, T.; Yu, C.H.; Chen, H.H. Impact of roasting on the changes in composition and quality of cashew nut (Anacardium occidentale) oil. Int. Food Res. J. 2016, 23, 986–991. [Google Scholar]
- Sandulachi, E.; Tatarov, P. Photometric color index of walnut oil. In Proceedings of the International Conference MTFI-2014, Modern Technologies in the Food Industry, Chişinau, Moldova, 16–18 October 2014; pp. 281–286. [Google Scholar]
- Al-Farsi, M.; Al-Amri, A.; Al-Hadhrami, A.; Al-Belushi, S. Color, flavonoids, phenolics and antioxidants of Omani honey. Heliyon 2018, 4, e00874. [Google Scholar] [CrossRef] [Green Version]
- Moniruzzaman, M.; Yung An, C.; Rao, P.V.; Hawlader, M.N.I.; Azlan, S.A.B.M.; Sulaiman, S.A.; Gan, S.H. Identification of phenolic acids and flavonoids in monofloral honey from bangladesh by high performance liquid chromatography: Determination of antioxidant capacity. Biomed Res. Int. 2014, 2014, 1–11. [Google Scholar] [CrossRef]
- Szabó, R.T.; Mézes, M.; Szalai, T.; Zajácz, E.; Weber, M. Colour identification of honey and methodical development of its instrumental measuring. Columella J. Agric. Environ. Sci. 2016, 3. [Google Scholar] [CrossRef]
- Di Caro, D.; Liguori, C.; Pietrosanto, A.; Sommella, P. A low-cost device for beer color measurement. In Proceedings of the 2019 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Portici, Italy, 24–26 October 2019; pp. 222–226. [Google Scholar] [CrossRef]
- Koren, D.; Hegyesné Vecseri, B.; Kun-Farkas, G.; Urbin, Á.; Nyitrai, Á.; Sipos, L. How to objectively determine the color of beer? J. Food Sci. Technol. 2020, 57, 1183–1189. [Google Scholar] [CrossRef] [Green Version]
- Salem, S.; Salem, A.; Agha Babaei, A. Preparation and characterization of nano porous bentonite for regeneration of semi-treated waste engine oil: Applied aspects for enhanced recovery. Chem. Eng. J. 2015, 260, 368–376. [Google Scholar] [CrossRef]
- Ossia, C.V.; Hosung, K.; Markova, L.V. Utilization of color change in the condition monitoring of synthetic hydraulic oils. Ind. Lubr. Tribol. 2010, 62, 349–355. [Google Scholar] [CrossRef]
- Salmerón, J.F.; Gómez-Robledo, L.; Carvajal, M.Á.; Huertas, R.; Moyano, M.J.; Gordillo, B.; Palma, A.J.; Heredia, F.J.; Melgosa, M. Measuring the colour of virgin olive oils in a new colour scale using a low-cost portable electronic device. J. Food Eng. 2012, 111, 247–254. [Google Scholar] [CrossRef]
- Dominguez, M.A.; Centurión, M.E. Application of digital images to determine color in honey samples from Argentina. Microchem. J. 2015, 118, 110–114. [Google Scholar] [CrossRef]
- Ishak, A.J.; Abdul Rahman, R.Z.; Soh, A.C.; Shamsudin, R.; Jalo, S.A.; Lim, F.C.; Lin, H.K. Quality identification of used cooking oil based on feature fusion of gas sensor and color. Int. J. Control. Theory Appl. 2016, 9, 2405–2413. [Google Scholar]
- Shafiee, S.; Minaei, S.; Moghaddam-Charkari, N.; Ghasemi-Varnamkhasti, M.; Barzegar, M. Potential application of machine vision to honey characterization. Trends Food Sci. Technol. 2013, 30, 174–177. [Google Scholar] [CrossRef]
- Anacan, R.M.; Cabautan, A.C.; Cayabyab, J.M.A.; Miguel, S.X.A.; Modrigo, V.D.; Rosites, C.J.V.; Sagun, A.C. Development of oil quality estimator using machine vision system. In Proceedings of the 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Baguio City, Philippines, 29 November–2 December 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Araújo, P.D.; Moya, M.V.M.; De Paula, I.C. Classification of cotton oil in the semi-refining process using image processing techniques: Image processing for industrial applications. In Proceedings of the 2017 Seventh International Conference on Innovative Computing Technology (INTECH), Luton, UK, 16–18 August 2017; pp. 21–25. [Google Scholar] [CrossRef]
- Nikolova, K.T.; Gabrova, R.; Boyadzhiev, D.; Pisanova, E.S.; Ruseva, J.; Yanakiev, D. Classification of different types of beer according to their colour characteristics. J. Phys. Conf. Ser. 2017, 794, 012035. [Google Scholar] [CrossRef]
- Silva, T.C.O.; Godinho, M.S.; de Oliveira, A.E. Identification of pale lager beers via image analysis. Lat. Am. Appl. Res. 2011, 41, 141–145. [Google Scholar]
- Mannu, A.; Vlahopoulou, G.; Sireus, V.; Petretto, G.L.; Mulas, G.; Garroni, S. Bentonite as a refining agent in waste cooking oils recycling: Flash point, density and color evaluation. Nat. Prod. Commun. 2018, 13, 613–616. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.A.; Kuntom, A.; Lee, C.K.; Low, K.S. Comparative evaluation of palm oil color measurement using a prototype palm oil colorimeter. J. Am. Oil Chem. Soc. 2004, 81, 733–736. [Google Scholar] [CrossRef]
- Moyano, M.J.; Heredia, F.J.; Meléndez-Martínez, A.J. The color of olive oils: The pigments and their likely health benefits and visual and instrumental methods of analysis. Compr. Rev. Food Sci. Food Saf. 2010, 9, 278–291. [Google Scholar] [CrossRef]
- Gómez-Robledo, L.; Melgosa, M.; Huertas, R.; Roa, R.; Moyano, M.J.; Heredia, F.J. Virgin-olive-oil color in relation to sample thickness and the measurement method. J. Am. Oil Chem. Soc. 2008, 85, 1063–1071. [Google Scholar] [CrossRef]
- Escolar, D.; Haro, M.R.; Ayuso, J. An efficient method for a numerical description of virgin olive oil color with only two absorbance measurements. J. Am. Oil Chem. Soc. 2002, 79, 769–774. [Google Scholar] [CrossRef]
- Moyano, M.J.; Ayala, F.; Echávarri, J.F.; Alba, J.; Negueruela, A.I.; Heredia, F.J. Simplified measurement of virgin olive oil color by application of the characteristic vector method. J. Am. Oil Chem. Soc. 2001, 78, 1221–1226. [Google Scholar] [CrossRef]
- Kuś, P.M.; Congiu, F.; Teper, D.; Sroka, Z.; Jerković, I.; Tuberoso, C.I.G. Antioxidant activity, color characteristics, total phenol content and general HPLC fingerprints of six Polish unifloral honey types. LWT—Food Sci. Technol. 2014, 55, 124–130. [Google Scholar] [CrossRef]
- Filteau, M.; Lagacé, L.; LaPointe, G.; Roy, D. Maple sap predominant microbial contaminants are correlated with the physicochemical and sensorial properties of maple syrup. Int. J. Food Microbiol. 2012, 154, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Aider, M.; de Halleux, D.; Belkacemi, K. Production of granulated sugar from maple syrup with high content of inverted sugar. J. Food Eng. 2007, 80, 791–797. [Google Scholar] [CrossRef]
- Mignani, A.G.; Ciaccheri, L.; Mencaglia, A.A.; Ottevaere, H.; Baća, E.E.S.; Thienpont, H. Optical measurements and pattern-recognition techniques for identifying the characteristics of beer and distinguishing Belgian beers. Sens. Actuators B Chem. 2013, 179, 140–149. [Google Scholar] [CrossRef]
- Megahed, M. Effect of microwave heating of linseed oil on the formation of primary and secondary oxidation products. Agric. Biol. J. N. Am. 2011, 2, 673–679. [Google Scholar] [CrossRef]
- Sanga, R.; Sivaramakrishna, M.; Srinivasan, V.S.; Prabhakara Rao, G. Design and Development of Opto-Resistive Type Quasi-Digital Sensor and Instrument for Online Assessment of the Quality of Lubricant Oil. IEEE Sens. J. 2019, 19, 7499–7506. [Google Scholar] [CrossRef]
- Mitschele, J. Beer-Lambert Law. J. Chem. Educ. 1996, 73, A260. [Google Scholar] [CrossRef] [Green Version]
Component | Details | Parameters |
---|---|---|
Laser Diode | 405 nm | Output Power: 20 mW |
450 nm | Output Power: 50 mW | |
Quartz Cuvette | 10 mm | Volume: 3.5 mL |
1 mm | Volume: 0.35 mL | |
Detector | Thorlabs S121C Standard Photodiode Power Sensor | Material: Silicon Range of Detection: 400 nm to 1100 nm Responsivity: <1 μs Sensitivity: 10 nW |
Absolute Value of r, |r| | Strength of Relationship |
---|---|
0–0.19 | Very weak |
0.20–0.39 | Weak |
0.40–0.59 | Moderate |
0.60–0.79 | Strong |
0.80–1.00 | Very strong |
Wavelength (nm) | Equation | Intercept, a | Slope, b | R2 |
---|---|---|---|---|
405 | y = a + b × x | 26.269 | −15.133 | 0.92277 |
450 | 55.438 | −17.830 | 0.98497 |
Wavelength (nm) | Equation | Intercept, a | Slope, b | R2 |
---|---|---|---|---|
405 | y = a + b × x | 24.421 | −3.1745 | 0.99168 |
450 | 57.284 | −5.7831 | 0.97202 |
Sample | ASTM D1500 | Estimated CI | Difference in CI | RMSE | |
---|---|---|---|---|---|
Equation (1) CI405 (R2 = 0.99170) | S1 | 0.5 | 0.55 | 0.05 | 0.2229 |
S2 | 1.0 | 0.99 | −0.01 | ||
S3 | 1.5 | 1.39 | −0.11 | ||
S4 | 2.0 | 1.97 | −0.03 | ||
S5 | 2.5 | 2.52 | 0.02 | ||
S6 | 3.0 | 3.25 | 0.25 | ||
S7 | 5.0 | 4.50 | −0.50 | ||
S8 | 5.5 | 5.87 | 0.37 | ||
S9 | 6.5 | 6.26 | −0.24 | ||
S10 | 7.0 | 7.15 | 0.15 | ||
S11 | 7.5 | 7.55 | 0.05 | ||
Equation (2) CI450 (R2 = 0.97200) | S1 | 0.5 | 0.97 | 0.47 | 0.4129 |
S2 | 1.0 | 1.34 | 0.34 | ||
S3 | 1.5 | 1.60 | 0.10 | ||
S4 | 2.0 | 1.86 | −0.14 | ||
S5 | 2.5 | 2.25 | −0.25 | ||
S6 | 3.0 | 2.52 | −0.48 | ||
S7 | 5.0 | 4.46 | −0.54 | ||
S8 | 5.5 | 5.33 | −0.17 | ||
S9 | 6.5 | 6.13 | −0.37 | ||
S10 | 7.0 | 7.17 | 0.17 | ||
S11 | 7.5 | 8.36 | 0.86 |
Wavelength | Sample | ASTM D1500 | Cuvette | |||||
---|---|---|---|---|---|---|---|---|
10 mm | 1 mm | |||||||
Estimated CI | Difference | RMSE | Estimated CI | Difference | RMSE | |||
405 | S1 | 0.5 | 0.42 | −0.08 | 0.1181 | 0.55 | 0.05 | 0.0728 |
S2 | 1.0 | 1.17 | 0.17 | 0.99 | −0.01 | |||
S3 | 1.5 | 1.42 | −0.08 | 1.39 | −0.11 | |||
450 | S1 | 0.5 | 0.36 | −0.14 | 0.1055 | 0.97 | 0.47 | 0.3309 |
S2 | 1.0 | 1.04 | 0.04 | 1.34 | 0.34 | |||
S3 | 1.5 | 1.58 | 0.08 | 1.60 | 0.10 | |||
S4 | 2.0 | 2.15 | 0.15 | 1.86 | −0.14 | |||
S5 | 2.5 | 2.50 | 0.00 | 2.25 | −0.25 | |||
S6 | 3.0 | 2.87 | −0.13 | 2.52 | −0.48 |
Methods | Wavelength (nm) | Human Observation | Model Equation | Accuracy |
---|---|---|---|---|
ASTM D1500 standard | NA | ✓ | ✕ | Max. error of 0.5 is tolerated |
UV-Vis Spectroscopy | 300–700 | ✕ | ✓ | RMSE = 0.1961 |
Single wavelength spectroscopy | 405 | ✕ | ✓ | RMSE405 = 0.2229 |
450 | ✕ | ✓ | RMSE450 = 0.4129 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasnul Hadi, M.H.; Ker, P.J.; Lee, H.J.; Leong, Y.S.; Hannan, M.A.; Jamaludin, M.Z.; Mahdi, M.A. Color Index of Transformer Oil: A Low-Cost Measurement Approach Using Ultraviolet-Blue Laser. Sensors 2021, 21, 7292. https://doi.org/10.3390/s21217292
Hasnul Hadi MH, Ker PJ, Lee HJ, Leong YS, Hannan MA, Jamaludin MZ, Mahdi MA. Color Index of Transformer Oil: A Low-Cost Measurement Approach Using Ultraviolet-Blue Laser. Sensors. 2021; 21(21):7292. https://doi.org/10.3390/s21217292
Chicago/Turabian StyleHasnul Hadi, Muhamad Haziq, Pin Jern Ker, Hui Jing Lee, Yang Sing Leong, Mahammad A. Hannan, Md. Zaini Jamaludin, and Mohd Adzir Mahdi. 2021. "Color Index of Transformer Oil: A Low-Cost Measurement Approach Using Ultraviolet-Blue Laser" Sensors 21, no. 21: 7292. https://doi.org/10.3390/s21217292
APA StyleHasnul Hadi, M. H., Ker, P. J., Lee, H. J., Leong, Y. S., Hannan, M. A., Jamaludin, M. Z., & Mahdi, M. A. (2021). Color Index of Transformer Oil: A Low-Cost Measurement Approach Using Ultraviolet-Blue Laser. Sensors, 21(21), 7292. https://doi.org/10.3390/s21217292