Self-Regulated Particle Swarm Multi-Task Optimization
Abstract
:1. Introduction
2. Background
2.1. Evolutionary Multi-Task Optimization
2.2. Self-Regulated Knowledge Transfer Scheme
2.3. Particle Swarm Optimization
3. The Proposed Method
3.1. Motivations
3.2. Self-Regulated Particle Swarm MTO (SRPSMTO) Algorithm
Algorithm 1 SRPSMTO. |
Input: |
n (population size) |
k (number of tasks) |
(PSO parameters) |
Output: |
(the best solution achieved on each of the k component tasks) |
1: Randomly generate a population of size n. |
2: Evenly separate into k subgroups and evaluate each subgroup on one corresponding task. |
3: Update the and , and the ability vector of individual in . |
4: while (stopping conditions are not satisfied) do |
5: Update positions (see Equation (2)). |
6: Update velocities (see Algorithm 2 and 3). |
7: Evaluate all individuals and Update the and (see Algorithm 4). |
8: Update the ability vector of every individual. |
9: end while |
3.2.1. Inter-Task Knowledge Transfer
Algorithm 2 VelocityUpdate_V1. |
|
Algorithm 3 VelocityUpdate_V2. |
|
3.2.2. Selective Evaluation
Algorithm 4 Population Evaluation. |
|
4. Experiments
4.1. Test Problems
4.2. Experimental Setup
- Population size: , k is the number of component tasks in an MTO problem [23]
- Parameter settings in SRPSMTO:
- -
- inertia weight w: decreases linearly from to
- -
- and :
- -
- ability vector:
- Parameter settings in PSO are same as the settings in the SRPSMTO
- Parameter settings in MFPSO:
- -
- random mating probability :
- -
- inertia weight w: decreases linearly from to
- -
- , and :
- Parameter settings in SREMTO:
- -
- probability for crossover:
- -
- probability for mutation:
- -
- distribution index of SBX: 1
- -
- distribution index of PM: 39
- Parameter settings in MFEA:
- -
- random mating probability :
- -
- distribution index of SBX: 2
- -
- distribution index of PM: 5
4.3. Experimental Results
4.3.1. The Effectiveness of Knowledge Transfer in SRPSMTO
4.3.2. Comparison of SRPSMTO with MFPSO, SREMTO and MFEA on Test Suite 1
4.3.3. Comparison of SRPSMTO with PSO, SREMTO and MFEA on Test Suite 2
4.3.4. Parameters Analysis
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MTO | Multi-task Optimization |
EMTO | Evolutionary Multi-task Optimization |
SREMTO | Self-regulated Evolutionary Multi-task Optimization |
PSO | Particle Swarm Optimization |
MFEA | Multifactorial Evolutionary Algorithm |
MFPSO | Multifactorial Particle Swarm Optimization |
MT-CPSO | Multitasking Coevolutionary Particle Swarm Optimization |
MTMSO | Multitasking Multiswarm Optimization |
References
- Swersky, K.; Snoek, J.; Adams, R.P. Multi-task bayesian optimization. In Processing of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–10 December 2013; pp. 2004–2012. [Google Scholar]
- Gupta, A.; Ong, Y.S.; Feng, L. Multifactorial Evolution: Toward Evolutionary Multitasking. IEEE Trans. Evol. Comput. 2016, 20, 343–357. [Google Scholar] [CrossRef]
- Zheng, X.; Qin, A.K.; Gong, M.; Zhou, D. Self-regulated Evolutionary Multi-task Optimization. IEEE Trans. Evol. Comput. 2019, 24, 16–28. [Google Scholar] [CrossRef]
- Zhou, L.; Feng, L.; Tan, K.C.; Zhong, J.; Zhu, Z.; Liu, K.; Chen, C. Toward adaptive knowledge transfer in multifactorial evolutionary computation. IEEE Trans. Cybern. 2020, 51, 2563–2576. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Zhang, K.; Tan, K.C.; Feng, L.; Wang, J.; Chen, G.; Zhao, X.; Zhang, L.; Yao, J. Affine transformation-enhanced multifactorial optimization for heterogeneous problems. IEEE Trans. Cybern. 2020, 1–15. [Google Scholar] [CrossRef]
- Bali, K.K.; Ong, Y.S.; Gupta, A.; Tan, P.S. Multifactorial Evolutionary Algorithm with Online Transfer Parameter Estimation: MFEA-II. IEEE Trans. Evol. Comput. 2019, 24, 69–83. [Google Scholar] [CrossRef]
- Bali, K.K.; Gupta, A.; Feng, L.; Ong, Y.S.; Siew, T.P. Linearized domain adaptation in evolutionary multitasking. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), Donostia, Spain, 5–8 June 2017; pp. 1295–1302. [Google Scholar]
- Huo, L.; Zhu, J.; Li, Z.; Ma, M. A Hybrid Differential Symbiotic Organisms Search Algorithm for UAV Path Planning. Sensors 2021, 21, 3037. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zhang, T.; Xiao, J.; Zhang, X.; Jin, Y. A coevolutionary framework for constrained multiobjective optimization problems. IEEE Trans. Evol. Comput. 2020, 25, 102–116. [Google Scholar] [CrossRef]
- Bali, K.K.; Gupta, A.; Ong, Y.S.; Tan, P.S. Cognizant multitasking in multiobjective multifactorial evolution: MO-MFEA-II. IEEE Trans. Cybern. 2020, 51, 1784–1796. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Ong, Y.S.; Gupta, A.; Tan, P.S.; Xu, H. Evolutionary multitasking in permutation-based combinatorial optimization problems: Realization with TSP, QAP, LOP, and JSP. In Proceedings of the 2016 IEEE Proceedings of Region 10 Conference (TENCON), Singapore, 22–25 November 2016; pp. 3157–3164. [Google Scholar]
- Whitley, D. A genetic algorithm tutorial. Stat. Comput. 1994, 4, 65–85. [Google Scholar] [CrossRef]
- Rauniyar, A.; Nath, R.; Muhuri, P.K. Multi-factorial evolutionary algorithm based novel solution approach for multi-objective pollution-routing problem. Comput. Ind. Eng. 2019, 130, 757–771. [Google Scholar] [CrossRef]
- Binh, H.T.; Thanh, P.D.; Trung, T.B. Effective Multifactorial Evolutionary Algorithm for Solving the Cluster Shortest Path Tree Problem. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. [Google Scholar]
- Mo, J.; Fan, Z.; Li, W.; Fang, Y.; You, Y.; Cai, X. Multi-factorial evolutionary algorithm based on M2M decomposition. In Proceedings of the Asia-Pacific Conference on Simulated Evolution and Learning, Shenzhen, China, 10–13 November 2017; pp. 134–144. [Google Scholar]
- Wen, Y.W.; Ting, C.K. Parting ways and reallocating resources in evolutionary multitasking. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), Shenzhen, China, 10–13 November 2017; pp. 2404–2411. [Google Scholar]
- Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43. [Google Scholar]
- Feng, L.; Zhou, W.; Zhou, L.; Jiang, S.; Zhong, J.; Da, B.; Zhu, Z.; Wang, Y. An empirical study of multifactorial PSO and multifactorial DE. In Proceedings of the Evolutionary Computation (CEC), Donostia, Spain, 5–8 June 2017; pp. 921–928. [Google Scholar]
- Cheng, M.Y.; Gupta, A.; Ong, Y.S.; Ni, Z.W. Coevolutionary multitasking for concurrent global optimization: With case studies in complex engineering design. Eng. Appl. Artif. Intell. 2017, 64, 13–24. [Google Scholar] [CrossRef]
- Song, H.; Qin, A.K.; Tsai, P.W.; Liang, J.J. Multitasking Multi-Swarm Optimization. In Proceedings of the 2019 IEEE Congress on Evolutionary Computation(CEC), Wellington, New Zealand, 10–13 June 2019; pp. 1937–1944. [Google Scholar]
- Hanh, P.T.H.; Thanh, P.D.; Binh, H.T.T. Evolutionary algorithm and multifactorial evolutionary algorithm on clustered shortest-path tree problem. Inf. Sci. 2021, 553, 280–304. [Google Scholar] [CrossRef]
- Yao, S.; Dong, Z.; Wang, X.; Ren, L. A Multiobjective multifactorial optimization algorithm based on decomposition and dynamic resource allocation strategy. Inf. Sci. 2020, 511, 18–35. [Google Scholar] [CrossRef]
- Liaw, R.T.; Ting, C.K. Evolutionary manytasking optimization based on symbiosis in biocoenosis. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019. [Google Scholar]
- Zhou, L.; Feng, L.; Liu, K.; Chen, C.; Deng, S.; Xiang, T.; Jiang, S. Towards Effective Mutation for Knowledge Transfer in Multifactorial Differential Evolution. In Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019; pp. 1541–1547. [Google Scholar]
- Shang, Q.; Zhou, L.; Feng, L. Multi-task optimization algorithm based on denoising auto-encoder. Dalian Ligong Daxue Xuebao/J. Dalian Univ. Technol. 2019, 59, 417–426. [Google Scholar]
- Zheng, X.; Lei, Y.; Qin, A.; Zhou, D.; Shi, J.; Gong, M. Differential Evolutionary Multi-task Optimization. In Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019; pp. 1914–1921. [Google Scholar]
- Li, H.; Ong, Y.S.; Gong, M.; Wang, Z. Evolutionary Multitasking Sparse Reconstruction: Framework and Case Study. IEEE Trans. Evol. Comput. 2018, 23, 733–747. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, H.; Zhou, A. A particle swarm optimization algorithm for mixed-variable optimization problems. Swarm Evol. Comput. 2021, 60, 100808. [Google Scholar] [CrossRef]
- Zeng, N.; Wang, Z.; Liu, W.; Zhang, H.; Hone, K.; Liu, X. A dynamic neighborhood-based switching particle swarm optimization algorithm. IEEE Trans. Cybern. 2020, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Liu, S.; Zhu, Q.; Tang, C.; Song, R.; Chen, J.; Coello, C.A.C.; Wong, K.C.; Zhang, J. Particle Swarm Optimization with a Balanceable Fitness Estimation for Many-objective Optimization Problems. IEEE Trans. Evol. Comput. 2017, 22, 32–46. [Google Scholar] [CrossRef]
- Ong, Y.S.; Lim, M.H.; Chen, X. Memetic computation—Past, present & future [research frontier]. IEEE Comput. Intell. Mag. 2010, 5, 24–31. [Google Scholar]
- Singh, S.; Singh, S.; Banga, V.K. Design of fuzzy logic system framework using evolutionary techniques. Soft Comput. 2020, 24, 4455–4468. [Google Scholar] [CrossRef]
- Chen, C.H.; Chou, F.I.; Chou, J.H. Optimization of Robotic Task Sequencing Problems by Crowding Evolutionary Algorithms. IEEE Trans. Syst. Man, Cybern. Syst. 2021, 1–16. [Google Scholar] [CrossRef]
- Drakopoulos, G.; Stathopoulou, F.; Kanavos, A.; Paraskevas, M.; Tzimas, G.; Mylonas, P.; Iliadis, L. A genetic algorithm for spatiosocial tensor clustering. Evol. Syst. 2020, 11, 491–501. [Google Scholar] [CrossRef]
- Bean, J.C. Genetic Algorithms and Random Keys for Sequencing and Optimization. ORSA J. Comput. 1994, 6, 154–160. [Google Scholar] [CrossRef]
- Da, B.; Ong, Y.S.; Feng, L.; Qin, A.K.; Gupta, A.; Zhu, Z.; Ting, C.K.; Tang, K.; Yao, X. Evolutionary Multitasking for Single-Objective Continuous Optimization: Benchmark Problems, Performance Metrics and Baseline Results. arXiv 2017, arXiv:1706.03470. [Google Scholar]
- Li, W.; Meng, X.; Huang, Y.; Fu, Z.H. Multipopulation cooperative particle swarm optimization with a mixed mutation strategy. Inf. Sci. 2020, 529, 179–196. [Google Scholar] [CrossRef]
- Wei, B.; Xia, X.; Yu, F.; Zhang, Y.; Xu, X.; Wu, H.; Gui, L.; He, G. Multiple adaptive strategies based particle swarm optimization algorithm. Swarm Evol. Comput. 2020, 57, 100731. [Google Scholar] [CrossRef]
- Han, H.; Lu, W.; Zhang, L.; Qiao, J. Adaptive Gradient Multiobjective Particle Swarm Optimization. IEEE Trans. Cybern. 2017, 48, 3067–3079. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Liu, Y.; Wang, H.; Cao, Y. A Geometric Structure-Based Particle Swarm Optimization Algorithm for Multiobjective Problems. IEEE Trans. Syst. Man, Cybern. Syst. 2017, 47, 2516–2537. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Zhang, Y.; Gong, D. Multiobjective particle swarm optimization for feature selection with fuzzy cost. IEEE Trans. Cybern. 2020, 51, 874–888. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.J.; Zhan, Z.H.; Kwong, S.; Jin, H.; Zhang, J. Adaptive granularity learning distributed particle swarm optimization for large-scale optimization. IEEE Trans. Cybern. 2020, 51, 1175–1188. [Google Scholar] [CrossRef]
- Zhan, Z.H.; Zhang, J.; Li, Y.; Chung, H.S.H. Adaptive particle swarm optimization. IEEE Trans. Syst. Man, Cybern. Part B (Cybern.) 2009, 39, 1362–1381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.N.; Zhang, J.; Lin, Y.; Chen, N.; Zhan, Z.H.; Chung, H.S.H.; Li, Y.; Shi, Y.H. Particle Swarm Optimization With an Aging Leader and Challengers. IEEE Trans. Evol. Comput. 2013, 17, 241–258. [Google Scholar] [CrossRef]
- Ali, M.M.; Khompatraporn, C.; Zabinsky, Z.B. A Numerical Evaluation of Several Stochastic Algorithms on Selected Continuous Global Optimization Test Problems. J. Glob. Optim. 2005, 31, 635–672. [Google Scholar] [CrossRef]
- Eberhart, R.C.; Shi, Y. Comparing inertia weights and constriction factors in particle swarm optimization. In Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No. 00TH8512), La Jolla, CA, USA, 16–19 July 2000; Volume 1, pp. 84–88. [Google Scholar]
- Kale, D.; Liu, Y. Accelerating active learning with transfer learning. In Proceedings of the 2013 IEEE 13th International Conference on Data Mining, Dallas, TX, USA, 7–10 December 2013; pp. 1085–1090. [Google Scholar]
- Lin, S.W.; Cheng, C.Y.; Pourhejazy, P.; Ying, K.C. Multi-temperature simulated annealing for optimizing mixed-blocking permutation flowshop scheduling problems. Expert Syst. Appl. 2021, 165, 113837. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, F.; Zhou, Y.; Zhang, Z. A hybrid method integrating an elite genetic algorithm with tabu search for the quadratic assignment problem. Inf. Sci. 2020, 539, 347–374. [Google Scholar] [CrossRef]
Problem | Component Task | Degree of Intersection | D | |
---|---|---|---|---|
1 | : Grewank | Complete intersection | 50 | 1.00 |
: Rastrigin | ||||
2 | : Ackely | Complete intersection | 50 | 0.23 |
: Rastrigin | ||||
3 | : Ackely | Complete intersection | 50 | 0.00 |
: Schwefel | ||||
4 | : Rastrigin | Partial intersection | 50 | 0.87 |
: Sphere | ||||
5 | : Ackely | Partial intersection | 50 | 0.22 |
: Rosenbrock | ||||
6 | : Ackely | Partial intersection | 50(: 25) | 0.07 |
: Weierstrass | ||||
7 | : Rosenbrock | No intersection | 50 | 0.94 |
: Rastrigin | ||||
8 | : Griewank | No intersection | 50 | 0.37 |
: Weierstrass | ||||
9 | : Rastrigin | No intersection | 50 | 0.00 |
: Weierstrass |
Problem | Basic Function | Search Range | Degree of Intersection | D |
---|---|---|---|---|
1 | Rosenbrock | [−50,50] | No intersection | 50 |
2 | Ackley | [−50,50] | No intersection | 50 |
3 | Rastrigin | [−50,50] | No intersection | 50 |
4 | Griewank | [−100,100] | No intersection | 50 |
5 | Weierstrass | [−0.5,0.5] | No intersection | 50 |
6 | Schwefel | [−500,500] | No intersection | 50 |
Problem | Task | SRPSMTO_V1 | PSO | ||
---|---|---|---|---|---|
Mean(Std) | Score | Mean(Std) | Score | ||
1 | 3.45E−3(7.55E−3) | −3.75E+1 | 8.70E−3(7.41E−3) | 3.75E+1 | |
1.69E+1(3.33E+1) | 3.08E+2(7.88E+1) | ||||
2 | 2.84E+0(6.62E−1) | −3.78E+1 | 3.44E+0(6.57E−1) | 3.78E+1 | |
6.76E+1(2.67E+1) | 3.04E+2(1.02E+2) | ||||
3 | 1.01E−2(9.24E−3) | −2.44E+1 | 7.12E+0(1.01E+1) | 2.44E+1 | |
7.15E−3(1.04E−2) | 5.83E−1(1.05E+0) | ||||
4 | 2.83E+2(7.26E+1) | −1.02E+1 | 3.13E+2(9.37E+1) | 1.02E+1 | |
1.82E−7(4.40E−7) | 1.94E−2(8.38E−2) | ||||
5 | 1.44E+0(9.40E−1) | −3.83E+1 | 3.26E+0(6.39E−1) | 3.83E+1 | |
9.79E+1(3.11E+1) | 1.64E+2(6.83E+1) | ||||
6 | 3.19E+0(8.22E−1) | −2.70E+1 | 3.21E+0(6.83E−1) | 2.70E+1 | |
2.66E+0(8.16E−1) | 9.77E+0(2.48E+0) | ||||
7 | 8.36E+1(4.07E+1) | −4.13E+1 | 2.33E+2(1.66E+2) | 4.13E+1 | |
6.69E+1(6.15E+1) | 3.26E+2(9.38E+1) | ||||
8 | 5.75E−3(8.13E−3) | −2.99E+1 | 8.57E−3(8.81E−3) | 2.99E+1 | |
1.85E+1(3.31E+0) | 3.11E+1(4.93E+0) | ||||
9 | 1.42E+2(8.54E+1) | −1.23E+1 | 3.15E+2(1.04E+2) | 1.23E+1 | |
4.07E+1(1.04E+2) | 8.19E−1(1.73E+0) | ||||
Mean | - | −2.88E+1 | - | 2.88E+1 |
Problem | Task | SRPSMTO_V2 | PSO | ||
---|---|---|---|---|---|
Mean(Std) | Score | Mean(Std) | Score | ||
1 | 6.17E−3(8.16E−3) | −3.21E+1 | 8.70E−3(7.41E−3) | 3.21E+1 | |
2.86E+1(4.06E+1) | 3.08E+2(7.88E+1) | ||||
2 | 3.35E+0(7.81E−1) | −2.59E+1 | 3.44E+0(6.57E−1) | 2.59E+1 | |
9.15E+1(4.48E+1) | 3.04E+2(1.02E+2) | ||||
3 | 1.29E−1(1.93E−1) | −1.28E+1 | 7.12E+0(1.01E+1) | 1.28E+1 | |
6.20E−1(1.37E+0) | 5.83E−1(1.05E+0) | ||||
4 | 3.03E+2(9.57E+1) | −6.41E+0 | 3.13E+2(9.37E+1) | 6.41E+0 | |
1.33E−8(3.41E−8) | 1.94E−2(8.38E−2) | ||||
5 | 1.85E+0(9.61E−1) | −3.77E+1 | 3.26E+0(6.39E−1) | 3.77E+1 | |
8.56E+1(2.75E+1) | 1.64E+2(6.83E+1) | ||||
6 | 3.50E+0(8.06E−1) | −1.95E+1 | 3.21E+0(6.83E−1) | 1.95E+1 | |
3.65E+0(1.19E+0) | 9.77E+0(2.48E+0) | ||||
7 | 8.48E+1(4.22E+1) | −4.15E+1 | 2.33E+2(1.66E+2) | 4.15E+1 | |
8.27E+1(3.51E+1) | 3.26E+2(9.38E+1) | ||||
8 | 9.28E−3(8.61E−3) | −2.25E+1 | 8.57E−3(8.81E−3) | 2.25E+1 | |
2.02E+1(3.39E+0) | 3.11E+1(4.93E+0) | ||||
9 | 9.50E+1(1.25E+2) | −1.59E+1 | 3.15E+2(1.04E+2) | 1.59E+1 | |
1.62E+2(6.98E+2) | 8.19E−1(1.73E+0) | ||||
Mean | - | −2.38E+1 | - | 2.38E+1 |
Problem | Task | SRPSMTO_V1 | SRPSMTO_V2 | MFPSO | SREMTO | MFEA | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean(Std) | Score | Mean(Std) | Score | Mean(Std) | Score | Mean(Std) | Score | Mean(Std) | Score | ||
1 | 3.45E−3(7.55E−3) | −3.90E+1 | 6.17E−3(8.16E−3) | −3.63E+1 | 9.34E−1(8.34E−2) | 1.13E+2 | 1.09E−2(9.83E−3) | −3.49E+1 | 9.64E−2(2.33E−2) | −2.76E+0 | |
1.69E+1(3.33E+1) | 2.86E+1(4.06E+1) | 3.76E+2(2.95E+1) | 3.33E+1(2.72E+1) | 1.53E+2(5.65E+1) | |||||||
2 | 2.84E+0(6.62E−1) | −4.40E+1 | 3.35E+0(7.81E−1) | −3.16E+1 | 7.29E+0(8.78E−1) | 1.05E+2 | 3.32E+0(8.88E−1) | −3.74E+1 | 4.57E+0(8.90E−1) | 8.39E+0 | |
6.76E+1(2.67E+1) | 9.15E+1(4.48E+1) | 5.19E+2(6.70E+1) | 5.92E+1(2.66E+1) | 2.11E+2(6.44E+1) | |||||||
3 | 1.01E−2(9.24E−3) | −6.22E+1 | 1.29E−1(1.93E−1) | −6.18E+1 | 2.12E+1(4.19E−2) | 8.08E+1 | 2.09E+1(4.07E−1) | 3.03E+1 | 2.01E+1(7.57E−2) | 1.29E+1 | |
7.15E−3(1.04E−2) | 6.20E−1(1.37E+0) | 1.42E+4(7.84E+2) | 5.48E+3(6.45E+2) | 2.81E+3(4.23E+2) | |||||||
4 | 2.83E+2(7.26E+1) | −3.44E+1 | 3.03E+2(9.57E+1) | −3.19E+1 | 8.49E+2(9.53E+1) | 1.10E+2 | 2.49E+2(6.04E+1) | −3.86E+1 | 5.18E+2(8.69E+1) | −5.04E+0 | |
1.82E−7(4.40E−7) | 1.33E−8(3.41E−8) | 4.50E+3(7.31E+2) | 1.09E−15(2.82E−15) | 3.71E−1(8.38E−2) | |||||||
5 | 1.44E+0(9.40E−1) | −3.56E+1 | 1.85E+0(9.61E−1) | −2.96E+1 | 6.49E+0(9.36E−1) | 1.04E+2 | 2.04E+0(9.33E−1) | −2.69E+1 | 3.05E+0(7.10E−1) | −1.20E+1 | |
9.79E+1(3.11E+1) | 8.56E+1(2.75E+1) | 9.94E+4(4.92E+4) | 9.55E+1(3.03E+1) | 2.26E+2(8.01E+1) | |||||||
6 | 3.19E+0(8.22E−1) | −4.57E+1 | 3.50E+0(8.06E−1) | −4.00E+1 | 1.14E+1(1.59E+0) | 1.98E+1 | 3.58E+0(7.35E−1) | −4.07E+1 | 1.99E+1(9.18E−2) | 1.07E+2 | |
2.66E+0(8.16E−1) | 3.65E+0(1.19E+0) | 9.26E+0(1.59E+0) | 3.42E+0(9.00E−1) | 2.05E+1(2.92E+0) | |||||||
7 | 8.36E+1(4.07E+1) | −3.26E+1 | 8.48E+1(4.22E+1) | −3.03E+1 | 3.34E+5(1.23E+5) | 1.10E+2 | 8.91E+1(5.66E+1) | −3.36E+1 | 2.94E+2(2.31E+2) | −1.35E+1 | |
6.69E+1(6.15E+1) | 8.27E+1(3.51E+1) | 5.70E+2(1.12E+2) | 6.02E+1(2.32E+1) | 1.97E+2(6.51E+1) | |||||||
8 | 5.75E−3(8.13E−3) | −3.90E+1 | 9.28E−3(8.61E−3) | −2.92E+1 | 1.11E+0(5.06E−2) | 9.45E+1 | 8.70E−3(1.00E−2) | −4.07E+1 | 9.60E−2(2.12E−2) | 1.44E+1 | |
1.85E+1(3.31E+0) | 2.02E+1(3.39E+0) | 2.86E+1(1.40E+0) | 1.82E+1(3.00E+0) | 2.68E+1(3.15E+0) | |||||||
9 | 1.42E+2(8.54E+1) | −4.62E+1 | 9.50E+1(1.25E+2) | −4.81E+1 | 1.50E+3(2.34E+2) | 1.10E+2 | 2.46E+2(4.85E+1) | −1.01E+1 | 5.61E+2(1.04E+2) | −5.32E+0 | |
4.07E+1(1.04E+2) | 1.62E+2(6.98E+2) | 1.35E+4(1.43E+3) | 5.11E+3(6.18E+2) | 2.98E+3(3.92E+2) | |||||||
Mean | - | −4.21E+1 | - | −3.77E+1 | - | 9.41E+1 | - | −2.59E+1 | - | 1.15E+1 |
Problem | Task | SRPSMTO_V1 | SRPSMTO_V2 | PSO | SREMTO | MFEA | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean(Std) | Score | Mean(Std) | Score | Mean(Std) | Score | Mean(Std) | Score | Mean(Std) | Score | ||
1 | 9.33E+1(4.99E+1) | −5.99E+1 | 1.00E+2(5.70E+1) | −6.32E+1 | 1.80E+2(9.40E+1) | 1.31E+1 | 1.91E+2(1.12E+2) | 4.83E+0 | 3.43E+2(9.37E+1) | 1.05E+2 | |
8.79E+1(3.94E+1) | 7.73E+1(3.89E+1) | 1.85E+2(1.13E+2) | 2.31E+2(1.55E+2) | 2.87E+2(6.41E+1) | |||||||
9.38E+1(4.30E+1) | 9.34E+1(4.14E+1) | 3.85E+2(8.77E+2) | 1.37E+2(4.02E+1) | 5.71E+2(7.65E+2) | |||||||
8.87E+1(4.36E+1) | 6.93E+1(3.05E+1) | 2.11E+2(1.34E+2) | 1.42E+2(5.67E+1) | 3.38E+2(9.57E+1) | |||||||
9.46E+1(6.11E+1) | 9.65E+1(3.21E+1) | 1.63E+2(6.05E+1) | 1.77E+2(1.57E+2) | 2.81E+2(4.57E+1) | |||||||
2 | 1.22E−6(9.73E−7) | −4.83E+1 | 6.87E−2(3.07E−1) | −4.73E+1 | 2.86E+0(7.85E−1) | −5.41E+0 | 1.31E+1(9.89E+0) | 1.47E+2 | 1.62E−1(4.46E−2) | −4.59E+1 | |
3.82E−6(3.93E−6) | 6.87E−2(3.07E−1) | 3.30E+0(3.59E+0) | 1.31E+1(9.87E+0) | 1.55E−1(4.02E−2) | |||||||
2.70E−6(2.49E−6) | 6.87E−2(3.07E−1) | 2.42E+0(5.34E−1) | 1.31E+1(9.87E+0) | 1.68E−1(3.21E−2) | |||||||
2.36E−6(1.93E−6) | 6.87E−2(3.07E−1) | 2.98E+0(9.81E−1) | 1.32E+1(9.90E+0) | 1.74E−1(3.12E−2) | |||||||
1.42E−6(1.39E−6) | 6.87E−2(3.07E−1) | 2.88E+0(9.97E−1) | 1.31E+1(9.90E+0) | 1.65E−1(4.01E−2) | |||||||
3 | 3.19E+2(8.46E+1) | −3.68E+1 | 3.23E+2(9.69E+1) | −2.57E+1 | 3.38E+2(9.18E+1) | −2.59E+1 | 2.79E+2(1.39E+2) | −6.04E+1 | 5.63E+2(1.25E+2) | 1.49E+2 | |
3.04E+2(5.87E+1) | 3.03E+2(9.61E+1) | 3.14E+2(6.60E+1) | 2.52E+2(6.17E+1) | 6.10E+2(1.76E+2) | |||||||
2.92E+2(8.88E+1) | 3.08E+2(8.15E+1) | 2.98E+2(7.58E+1) | 2.82E+2(1.27E+2) | 5.93E+2(1.42E+2) | |||||||
3.04E+2(9.15E+1) | 3.19E+2(9.22E+1) | 3.04E+2(9.86E+1) | 2.57E+2(9.59E+1) | 5.95E+2(1.01E+2) | |||||||
2.97E+2(6.06E+1) | 3.43E+2(1.07E+2) | 3.40E+2(8.04E+1) | 2.65E+2(9.19E+1) | 5.73E+2(1.06E+2) | |||||||
4 | 6.03E−3(8.50E−3) | −5.13E+1 | 5.66E−3(1.12E−2) | −5.03E+1 | 1.35E−2(1.08E−2) | −3.77E+1 | 1.19E−2(1.17E−2) | −4.78E+1 | 1.37E−1(3.29E−2) | 1.87E+2 | |
9.36E−3(1.18E−2) | 8.99E−3(9.76E−3) | 2.37E−2(4.29E−2) | 4.74E−3(7.55E−3) | 1.26E−1(3.18E−2) | |||||||
6.65E−3(8.61E−3) | 4.80E−3(9.05E−3) | 7.75E−3(8.27E−3) | 7.48E−3(1.14E−2) | 1.42E−1(3.18E−2) | |||||||
4.93E−3(5.65E−3) | 7.51E−3(9.42E−3) | 1.57E−2(1.84E−2) | 1.11E−2(1.11E−2) | 1.37E−1(2.74E−2) | |||||||
6.65E−3(7.50E−3) | 9.47E−3(1.16E−2) | 9.29E−3(9.91E−3) | 8.05E−3(7.52E−3) | 1.45E−1(2.60E−2) | |||||||
5 | 5.52E+0(1.49E+0) | 1.19E+1 | 3.89E+0(1.10E+0) | −3.14E+1 | 5.27E+0(1.18E+0) | 6.98E−1 | 8.74E+0(2.98E+0) | 1.35E+2 | 1.34E+0(1.51E−1) | −1.16E+2 | |
5.50E+0(1.16E+0) | 4.07E+0(1.36E+0) | 5.30E+0(1.78E+0) | 9.89E+0(3.92E+0) | 1.35E+0(1.03E−1) | |||||||
5.29E+0(1.66E+0) | 4.55E+0(1.43E+0) | 5.47E+0(1.68E+0) | 1.06E+1(3.68E+0) | 1.28E+0(1.21E−1) | |||||||
5.57E+0(1.65E+0) | 4.37E+0(1.32E+0) | 4.66E+0(1.72E+0) | 9.53E+0(3.96E+0) | 1.34E+0(1.49E−1) | |||||||
6.26E+0(1.62E+0) | 4.05E+0(1.25E+0) | 5.57E+0(1.42E+0) | 1.02E+1(3.60E+0) | 1.37E+0(1.35E−1) | |||||||
6 | 2.80E+2(3.67E+2) | −8.18E+1 | 6.53E+2(4.31E+2) | −6.07E+1 | 2.13E+2(1.83E+2) | −8.51E+1 | 4.24E+3(8.23E+2) | 1.47E+2 | 3.15E+3(3.48E+2) | 8.01E+1 | |
2.56E+2(3.26E+2) | 6.33E+2(4.10E+2) | 1.85E+2(1.48E+2) | 4.36E+3(8.93E+2) | 3.18E+3(4.30E+2) | |||||||
2.90E+2(3.94E+2) | 6.29E+2(3.90E+2) | 2.16E+2(1.61E+2) | 4.22E+3(8.25E+2) | 3.08E+3(3.83E+2) | |||||||
3.00E+2(3.77E+2) | 6.91E+2(4.19E+2) | 2.69E+2(2.24E+2) | 4.41E+3(8.17E+2) | 2.99E+3(3.62E+2) | |||||||
2.86E+2(3.72E+2) | 6.45E+2(4.00E+2) | 2.36E+2(1.78E+2) | 4.14E+3(7.82E+2) | 3.11E+3(4.38E+2) | |||||||
Mean | - | -4.44E+1 | - | −4.64E+1 | - | -2.34E+1 | - | 5.43E+1 | - | 5.98E+1 |
Problem | Task | n = 20 | n = 60 | n = 100 | n = 140 | n = 180 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean(Std) | Score | Mean(Std) | Score | Mean(Std) | Score | Mean(Std) | Score | Mean(Std) | Score | ||
1 | 5.15E−1(2.15E−1) | 1.02E+2 | 8.74E−3(1.02E−2) | −2.33E+1 | 3.45E−3(7.55E−3) | −3.19E+1 | 8.05E−3(1.02E−2) | −2.37E+1 | 7.93E−3(9.37E−3) | −2.28E+1 | |
1.67E+2(4.87E+1) | 3.53E+1(3.94E+1) | 1.69E+1(3.33E+1) | 3.46E+1(3.82E+1) | 3.67E+1(4.81E+1) | |||||||
2 | 6.42E+0(1.21E+0) | 9.76E+1 | 3.56E+0(1.04E+0) | −1.97E+0 | 2.84E+0(6.62E−1) | −2.50E+1 | 2.48E+0(5.95E−1) | −3.20E+1 | 2.34E+0(4.39E−1) | −3.86E+1 | |
2.58E+2(1.08E+2) | 1.01E+2(5.06E+1) | 6.76E+1(2.67E+1) | 6.53E+1(2.69E+1) | 5.26E+1(1.61E+1) | |||||||
3 | 2.07E−1(2.76E−1) | −2.13E+0 | 2.80E−2(2.80E−2) | −2.78E+1 | 1.01E−2(9.24E−3) | −2.97E+1 | 3.35E−1(4.10E−1) | 2.17E+1 | 4.36E−1(4.03E−1) | 3.80E+1 | |
1.19E+0(2.50E+0) | 4.28E−2(7.15E−2) | 7.15E−3(1.04E−2) | 2.70E+0(5.44E+0) | 3.57E+0(4.98E+0) | |||||||
4 | 6.07E+2(1.27E+2) | 8.03E+1 | 3.33E+2(8.05E+1) | −1.08E+1 | 2.83E+2(7.26E+1) | −2.03E+1 | 2.75E+2(7.82E+1) | −2.17E+1 | 2.45E+2(7.89E+1) | −2.75E+1 | |
5.79E+1(8.40E+1) | 4.93E−5(1.42E−4) | 1.82E−7(4.40E−7) | 1.05E−5(5.60E−5) | 3.50E−5(8.50E−5) | |||||||
5 | 4.02E+0(6.84E−1) | 8.53E+1 | 2.00E+0(7.53E−1) | −1.17E+1 | 1.44E+0(9.40E−1) | −2.52E+1 | 1.55E+0(9.08E−1) | −2.28E+1 | 1.43E+0(8.59E−1) | −2.55E+1 | |
2.66E+3(2.55E+3) | 1.21E+2(4.53E+1) | 9.79E+1(3.11E+1) | 9.50E+1(2.96E+1) | 9.48E+1(2.36E+1) | |||||||
6 | 8.70E+0(1.68E+0) | 1.06E+2 | 3.98E+0(8.47E−1) | −6.57E+0 | 3.19E+0(8.22E−1) | −2.88E+1 | 3.04E+0(7.78E−1) | −3.02E+1 | 2.58E+0(6.52E−1) | −4.07E+1 | |
8.25E+0(1.55E+0) | 3.70E+0(1.07E+0) | 2.66E+0(8.16E−1) | 2.70E+0(1.02E+0) | 2.30E+0(7.21E−1) | |||||||
7 | 2.49E+3(2.46E+3) | 8.33E+1 | 1.33E+2(5.48E+1) | −1.51E+1 | 8.36E+1(4.07E+1) | −2.39E+1 | 9.26E+1(4.36E+1) | −2.11E+1 | 9.75E+1(5.58E+1) | −2.32E+1 | |
2.38E+2(9.24E+1) | 9.00E+1(3.76E+1) | 6.69E+1(6.15E+1) | 7.47E+1(5.67E+1) | 6.80E+1(4.18E+1) | |||||||
8 | 6.47E−1(2.86E−1) | 9.39E+1 | 9.16E−3(8.62E−3) | −1.23E+1 | 5.75E−3(8.13E−3) | −2.07E+1 | 5.99E−3(9.00E−3) | −3.35E+1 | 7.15E−3(8.70E−3) | −2.73E+1 | |
2.48E+1(2.50E+0) | 1.96E+1(2.68E+0) | 1.85E+1(3.31E+0) | 1.68E+1(2.58E+0) | 1.76E+1(3.12E+0) | |||||||
9 | 3.13E+2(1.25E+2) | 5.70E+1 | 2.00E+2(8.92E+1) | −2.74E+0 | 1.42E+2(8.54E+1) | −1.37E+1 | 1.38E+2(8.08E+1) | −1.67E+1 | 1.24E+2(9.64E+1) | −2.38E+1 | |
2.13E+2(3.48E+2) | 1.78E+1(6.53E+1) | 4.07E+1(1.04E+2) | 2.90E+1(1.28E+2) | 6.61E+0(1.02E+1) | |||||||
Mean | - | 7.81E+1 | - | −1.25E+1 | - | −2.44E+1 | - | −2.00E+1 | - | −2.13E+1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, X.; Zhou, D.; Li, N.; Wu, T.; Lei, Y.; Shi, J. Self-Regulated Particle Swarm Multi-Task Optimization. Sensors 2021, 21, 7499. https://doi.org/10.3390/s21227499
Zheng X, Zhou D, Li N, Wu T, Lei Y, Shi J. Self-Regulated Particle Swarm Multi-Task Optimization. Sensors. 2021; 21(22):7499. https://doi.org/10.3390/s21227499
Chicago/Turabian StyleZheng, Xiaolong, Deyun Zhou, Na Li, Tao Wu, Yu Lei, and Jiao Shi. 2021. "Self-Regulated Particle Swarm Multi-Task Optimization" Sensors 21, no. 22: 7499. https://doi.org/10.3390/s21227499
APA StyleZheng, X., Zhou, D., Li, N., Wu, T., Lei, Y., & Shi, J. (2021). Self-Regulated Particle Swarm Multi-Task Optimization. Sensors, 21(22), 7499. https://doi.org/10.3390/s21227499