Vehicle Interaction Behavior Prediction with Self-Attention
Abstract
:1. Introduction
2. Related Works
3. Model and Proposed Methods
3.1. Intent Prediction Model
3.2. Self-Attention Encoder
3.3. Interactive Feature Extraction
3.4. Model Optimization
4. Experiments and Result Analysis
4.1. Datasets
4.2. Experimental Settings
4.2.1. Training Parameter Settings
4.2.2. Evaluation Parameter Settings
4.3. Results Analysis
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- S. O.-R. A. V. S. Committee. Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles; SAE Int.: Warrendale, PA, USA, 2018; Tech. Rep. J3016B_201806. [Google Scholar]
- Woo, H.; Ji, Y.; Tamura, Y.; Kuroda, Y.; Asama, H. Lane-change detection based on individual driving style. Adv. Robot. 2019, 33, 1087–1098. [Google Scholar] [CrossRef]
- Dagli, I.; Breuel, G.; Schittenhelm, H.; Schanz, A. Cutting-in vehicle recognition for ACC systems-towards feasible situation analysis methodologies. In Proceedings of the IEEE IEEE Intelligent Vehicles Symposium, Parma, Italy, 14–17 June 2004. [Google Scholar]
- Hodge, V.J.; Krishnan, R.; Jackson, T.; Austin, J.; Polak, J. Short-Term Traffic Prediction Using a Binary Neural Network. In Proceedings of the 43rd Annual UTSG Conference, York, UK, 5–7 January 2011. [Google Scholar]
- Zambrano-Martinez, J.L.; Calafate, C.T.; Soler, D.; Lemus-Zúñiga, L.G.; Cano, J.C.; Manzoni, P.; Gayraud, T. A centralized route-management solution for autonomous vehicles in urban areas. Electronics 2019, 8, 722. [Google Scholar] [CrossRef] [Green Version]
- Hasenjager, M.; Heckmann, M.; Wersing, H. A Survey of Personalization for Advanced Driver Assistance Systems. IEEE Trans. Intell. Veh. 2020, 5, 335–344. [Google Scholar] [CrossRef]
- Xing, Y.; Lv, C.; Wang, H.; Cao, D.; Wang, F.Y. Driver lane change intention inference for intelligent vehicles: Framework, survey, and challenges. IEEE Trans. Veh. Technol. 2019, 68, 4377–4390. [Google Scholar] [CrossRef] [Green Version]
- Ou, C.; Karray, F. Deep learning-based driving maneuver prediction system. IEEE Trans. Veh. Technol. 2019, 69, 1328–1340. [Google Scholar] [CrossRef]
- Choi, K.; Jung, H.G. Cut-in vehicle warning system exploiting multiple rotational images of svm cameras. Expert Syst. Appl. 2019, 125, 81–99. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Han, K.; Shou, Z.; Hansen, J.H.L. Vision-Cloud Data Fusion for ADAS: A Lane Change Prediction Case Study. IEEE Trans. Intell. Veh. 2021. [Google Scholar] [CrossRef]
- Fernández-Llorca, D.; Biparva, M.; Izquierdo-Gonzalo, R.; Tsotsos, J.K. Two-Stream Networks for Lane-Change Prediction of Surrounding Vehicles. In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece, 20–23 September 2020. [Google Scholar]
- Liu, Q.; Xu, S.; Lu, C.; Yao, H.; Chen, H. Early recognition of driving intention for lane change based on recurrent hidden semi-markov model. IEEE Trans. Veh. Technol. 2020, 69, 10545–10557. [Google Scholar] [CrossRef]
- Li, J.; Lu, C.; Xu, Y.; Zhang, Z.; Di, H. Manifold Learning for Lane-Changing Behavior Recognition in Urban Traffic. In Proceedings of the 22nd IEEE Intelligent Transportation Systems Conference (ITSC2019), Auckland, New Zealand, 27–30 October 2019; pp. 3663–3668. [Google Scholar]
- Zhu, B.; Yan, S.; Zhao, J.; Deng, W. Personalized lane-change assistance system with driver behavior identification. IEEE Trans. Veh. Technol. 2018, 67, 10293–10306. [Google Scholar] [CrossRef]
- Leonhardt, V.; Wanielik, G. Feature evaluation for lane change prediction based on driving situation and driver behavior. In Proceedings of the 2017 20th International Conference on Information Fusion (Fusion), Xi’an, China, 10–13 July 2017; pp. 1–7. [Google Scholar]
- Oh, C.; Choi, J.; Park, S. In-depth understanding of lane changing interactions for in-vehicle driving assistance systems. Int. J. Automot. Technol. 2017, 18, 357–363. [Google Scholar] [CrossRef]
- Tang, J.; Yu, S.; Liu, F.; Chen, X.; Huang, H. A hierarchical prediction model for lane-changes based on combination of fuzzy c-means and adaptive neural network. Expert Syst. Appl. 2019, 130, 265–275. [Google Scholar] [CrossRef]
- Das, A.; Khan, M.N.; Ahmed, M.M. Detecting lane change maneuvers using SHRP2 naturalistic driving data: A comparative study machine learning techniques. Accid. Anal. Prev. 2020, 142, 105578. [Google Scholar] [CrossRef]
- Zyner, A.; Worrall, S.; Nebot, E. Naturalistic driver intention and path prediction using recurrent neural networks. IEEE Trans. Intell. Transp. Syst. 2020, 21, 1584–1594. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Qin, L.; Wang, J.; Verwer, S.; Dolan, J.M. Lane-change intention estimation for car-following control in autonomous driving. IEEE Trans. Intell. Veh. 2018, 3, 276–286. [Google Scholar] [CrossRef]
- Li, L.; Zhao, W.; Xu, C.; Wang, C.; Chen, Q.; Dai, A. Lane-Change Intention Inference based on RNN for Autonomous Driving on Highways. IEEE Trans. Veh. Technol. 2021, 70, 5499–5510. [Google Scholar] [CrossRef]
- Tang, L.; Wang, H.; Zhang, W.; Mei, Z.; Li, L. Driver Lane Change Intention Recognition of Intelligent Vehicle Based on Long Short-Term Memory Network. IEEE Access 2020, 8, 136898–136905. [Google Scholar] [CrossRef]
- Song, R.; Li, B. Surrounding vehicles’ lane change maneuver prediction and detection for intelligent vehicles: A comprehensive review. IEEE Trans. Intell. Transp. Syst. 2021, 1–17. [Google Scholar] [CrossRef]
- Gehring, J.; Auli, M.; Grangier, D.; Yarats, D.; Dauphin, Y.N. Convolutional Sequence to Sequence Learning. arXiv 2017, arXiv:1705.03122. [Google Scholar]
- Galassi, A.; Lippi, M.; Torroni, P. Attention in Natural Language Processing. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 4291–4308. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, l. Attention Is All You Need. Advances in Neural Information Processing Systems 2017. pp. 5998–6008. Available online: https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf (accessed on 30 December 2021).
- Chen, T.; Shi, X.; Wong, Y.D. Key feature selection and risk prediction for lane-changing behaviors based on vehicles’ trajectory data. Accid. Anal. Prev. 2019, 129, 156–169. [Google Scholar] [CrossRef]
- Reddi, S.J.; Kale, S.; Kumar, S. On the convergence of adam and beyond. In Proceedings of the 6th International Conference on Learning Representations(ICLR 2018), Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Loshchilov, I.; Hutter, F. Fixing Weight Decay Regularization in Adam. In Proceedings of the 6th International Conference on Learning Representations(ICLR 2018), Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Bouraoui, Z.; Camacho-Collados, J.; Schockaert, S. Inducing relational knowledge from bert. Proc. AAAI Conf. Artif. Intell. 2020, 34, 7456–7463. [Google Scholar] [CrossRef]
- Smith, L.N.; Topin, N. Super-convergence: Very fast training of neural networks using large learning rates. In Proceedings of the Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications, Baltimore, MA, USA, 15–17 April 2019. [Google Scholar]
- Punzo, V.; Borzacchiello, M.T.; Ciuffo, B.C. On the assessment of vehicle trajectory data accuracy and application to the next generation simulation (ngsim) program data. Transp. Res. Part C: Emerg. Technol. 2011, 19, 1243–1262. [Google Scholar] [CrossRef]
- Su, S.; Muelling, K.; Dolan, J.; Palanisamy, P.; Mudalige, P. Learning Vehicle Surrounding-aware Lane-changing Behavior from Observed Trajectories. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 1412–1417. [Google Scholar]
- Dou, Y.; Yan, F.; Feng, D. Lane changing prediction at highway lane drops using support vector machine and artificial neural network classifiers. In Proceedings of the 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Banff, AB, Canada, 12–15 July 2016; pp. 901–906. [Google Scholar]
- Li, J.; Dai, B.; Li, X.; Xu, X.; Liu, D. A dynamic bayesian network for vehicle maneuver prediction in highway driving scenarios: Framework and verification. Electronics 2019, 8, 40. [Google Scholar] [CrossRef] [Green Version]
- Han, T.; Jing, J.; Ozguner, U. Driving intention recognition and lane change prediction on the highway. IEEE. Trans. Intell. Veh. 2019, 4, 265–276. [Google Scholar]
- Scheel, O.; Nagaraja, N.S.; Schwarz, L.; Navab, N.; Tombari, F. Attention-based lane change prediction. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019. [Google Scholar]
- Schreier, M.; Willert, V.; Adamy, J. An integrated approach to maneuver-based trajectory prediction and criticality assessment in arbitrary road environments. IEEE Trans. Intell. Transp. Syst. 2016, 17, 2751–2766. [Google Scholar] [CrossRef]
Feature Type (Interaction Information) | Related Parameters | Parameter Representation |
---|---|---|
Between the target vehicle and the ego-vehicle | Relative speed/(m/s) | |
Relative acceleration/(m/s2) | ||
Relative position/(m) | ||
Between surrounding vehicles and the target vehicle | Relative speed/(m/s) | |
Relative acceleration/(m/s2) | ||
Lateral distance/(m) | ||
Deceleration rate to avoid a crash/(m/s2) | ||
Vehicle cluster | Relative position/(m) | |
Gap in the lane/(m) |
Intention | Precision | Recall | F1 Score |
Cut-in | 0.907 | 0.932 | 0.921 |
Cut-out | 0.912 | 0.916 | 0.910 |
No-cut | 0.938 | 0.925 | 0.931 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Sui, X.; Lian, J.; Yu, F.; Zhou, Y. Vehicle Interaction Behavior Prediction with Self-Attention. Sensors 2022, 22, 429. https://doi.org/10.3390/s22020429
Li L, Sui X, Lian J, Yu F, Zhou Y. Vehicle Interaction Behavior Prediction with Self-Attention. Sensors. 2022; 22(2):429. https://doi.org/10.3390/s22020429
Chicago/Turabian StyleLi, Linhui, Xin Sui, Jing Lian, Fengning Yu, and Yafu Zhou. 2022. "Vehicle Interaction Behavior Prediction with Self-Attention" Sensors 22, no. 2: 429. https://doi.org/10.3390/s22020429
APA StyleLi, L., Sui, X., Lian, J., Yu, F., & Zhou, Y. (2022). Vehicle Interaction Behavior Prediction with Self-Attention. Sensors, 22(2), 429. https://doi.org/10.3390/s22020429