A Shallow U-Net Architecture for Reliably Predicting Blood Pressure (BP) from Photoplethysmogram (PPG) and Electrocardiogram (ECG) Signals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
2.1.1. Multi-Parameter Intelligent Monitoring in Intensive Care II (MIMIC-II) Dataset from the UCI Repository
2.1.2. Ballistocardiogram (BCG) Dataset
2.2. Data Pre-Processing
Algorithm 1 Pseudo-Code: Baseline Drift Correction |
Inputs: X (Segmented Raw Signal) |
1.1.1. Check X is a Row Vector else X = Transpose (X) |
1.2.1. Initialize Time_Vector = Transpose (linspace(1, length(X), length(X))) |
2.1.1. try: |
2.2.1. [peaks, peak_locations] = findpeaks(X) |
2.3.1. Initialize peak_dist |
2.4.1. for i = 1: (length(peak_locations) − 1) |
2.4.2. peak_dist(i) = peak_locations(i + 1) − peak_locations(i) |
2.4.3. end for |
2.5.1. median_peak_dist = median (peak_dist) |
2.6.1. Baseline = movmin (X, median_peak_dist) |
2.7.1. P = polyfit (Time_Vector’, Baseline, round(median_peak_dist)) |
3.1.1. except: |
3.2.1. Initialize polynomial_order |
3.3.1. P = polyfit (Time_Vector’, X, polynomial_order) |
4.1.1. Baseline_Fit = polyval (P, Time_Vector’) |
4.2.1. Y = X – Baseline_Fit |
4.3.1. Y = Y – min(Y) |
4.4.1. X_amp = max(X) − min(X) |
4.5.1. Y_amp = max(Y) − min(Y) |
4.6.1. Y = Y*(X_amp/Y_amp) |
Outputs: Y (Baseline Corrected Signal) |
Algorithm 2 Pseudo-Code: Deriving PPG Derivatives |
Inputs: PPG |
1.1.1. Initialize Bandpass Filter Parameters (Filter Order, Passband, Stopband, Sampling Frequencies) |
2.1.1 bandpass_filter = designfilt(Bandpass Filter using Filter Parameters) |
2.2.1 delay = mean(grpdelay(bandpass_filter)) |
3.1.1 Initialize Sample_Num = linspace(1, length(PPG), length(PPG)) |
3.2.1 dt = Sample_Num(2) − Sample_Num(1) 3.3.1 PPG = Normalize(PPG) 3.4.1 VPG = Normalize(bandpass_filter(PPG)/dt) 3.5.1 APG = Normalize(bandpass_filter(VPG)/dt) 3.6.1 PPG = PPG(1:end−2*delay) 3.7.1 VPG = VPG(delay+1:end) 3.8.1 APG = APG(2*delay+1:end) Outputs: PPG, VPG, APG |
Algorithm 3 Pseudo-Code: Deriving PPG Derivatives |
Inputs: PPG, ABP, Signal_Length 1.1.1 Normalize both signals 1.2.1 PPG_Size = size(PPG) 1.3.1 ABP_Size = size(ABP) 1.4.1 if (PPG_Size(1) or ABP_Size(1)) > 1 then Transpose 2.1.1 Initialize Time_Vector = linspace(1, length(PPG), length(PPG)) 2.2.1 [peaks_PPG, peak_locations_PPG] = findpeaks(PPG) 2.3.1 num_peaks_PPG = length(peaks_PPG) 2.4.1 std_peaks_PPG = std(peaks_PPG) 2.5.1 std_peaks_dist_PPG = std(peak_locations_PPG) 2.6.1 [peaks_ABP, peak_locations_ABP] = findpeaks(ABP) 2.7.1 num_peaks_ABP = length(peaks_ABP) 2.8.1 std_peaks_ABP = std(peaks_ABP) 2.9.1 std_peaks_dist_ABP = std(peak_locations_ABP) 3.1.1 Initialize thresholds 3.2.1 if (std_peaks_PPG, std_peaks_dist_PPG, std_peaks_ABP, std_peaks_dist_ABP, num_peaks_PPG, num_peaks_ABP) satisfies thresholds then Decision = 0 3.2.2 else Decision = 1 Outputs: Decision (0 or 1) |
2.3. Rationale behind This Study
2.4. Pipeline for Blood Pressure (BP) Prediction
2.4.1. Feature Extractor
2.4.2. Regressor
3. Experiments
3.1. Experiment 1 (Train and Test on UCI Dataset)
3.2. Experiment 2 (Validating on External “BCG Dataset”)
3.3. Evaluation Metrics
4. Results
4.1. Experiment 1: Train and Test on UCI Dataset
4.2. Experiment 2 (Validating on an External “BCG” Dataset)
4.3. Comparison with Existing Works
4.4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 29 September 2021).
- Heart Disease and Stroke. Cdc.gov. 2021. Available online: https://www.cdc.gov/chronicdisease/resources/publications/factsheets/heart-disease-stroke.html (accessed on 18 August 2021).
- Bhatt, S.; Dransfield, M. Chronic obstructive pulmonary disease and cardiovascular disease. Transl. Res. 2013, 162, 237–251. [Google Scholar] [CrossRef] [PubMed]
- Morris, A. Heart-lung interaction via infection. Ann. Am. Thorac. Soc. 2014, 11, S52–S56. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Hu, H.; Chou, Y.; Huang, N.; Chou, Y.; Li, C. High Blood Pressure and All-Cause and Cardiovascular Disease Mortalities in Community-Dwelling Older Adults. Medicine 2015, 94, e2160. Available online: https://pubmed.ncbi.nlm.nih.gov/26632749/ (accessed on 5 October 2021). [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Vital Signs: Awareness and Treatment of Uncontrolled Hypertension among Adults—The United States, 2003–2010. MMWR Morb. Mortal. Wkly. Rep. 2021, 103, 583–586. Available online: https://pubmed.ncbi.nlm.nih.gov/22951452/ (accessed on 1 October 2021).
- World Health Organization. A Global Brief on Hypertension: Silent Killer, Global Public Health Crisis: World Health Day 2013. Apps.who.int, 2021. Available online: https://apps.who.int/iris/handle/10665/79059 (accessed on 22 May 2021).
- Goodman, C.T.; Kitchen, G.B. Measuring arterial blood pressure. Anaesth. Intensiv. Care Med. 2020, 22, 49–53. [Google Scholar] [CrossRef]
- Meidert, A.S.; Saugel, B. Techniques for Non-Invasive Monitoring of Arterial Blood Pressure. Front. Med. 2018, 4, 231. [Google Scholar] [CrossRef]
- Lakhal, K.; Ehrmann, S.; Boulain, T. Noninvasive BP Monitoring in the Critically Ill. Chest 2018, 153, 1023–1039. [Google Scholar] [CrossRef]
- Salvi, P.; Grillo, A.; Parati, G. Noninvasive estimation of central blood pressure and analysis of pulse waves by applanation tonometry. Hypertens. Res. 2015, 38, 646–648. [Google Scholar] [CrossRef]
- Kachuee, M.; Kiani, M.; Mohammadzade, H.; Shabany, M. Cuff-less high-accuracy calibration-free blood pressure estimation using pulse transit time. In Proceedings of the 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 24–27 May 2015. [Google Scholar]
- Ibtehaz, N.; Rahman, M.S. PPG2ABP: Translating Photoplethysmogram (PPG) Signals to Arterial Blood Pressure (ABP)Waveforms using Fully Convolutional Neural Networks. arXiv 2020, arXiv:2005.01669. Available online: https://arxiv.org/abs/2005.01669 (accessed on 13 October 2021).
- Kachuee, M.; Kiani, M.M.; Mohammadzade, H.; Shabany, M. Cuffless Blood Pressure Estimation Algorithms for Continuous Health-Care Monitoring. IEEE Trans. Biomed. Eng. 2016, 64, 859–869. [Google Scholar] [CrossRef]
- Xie, Q.; Wang, G.; Peng, Z.; Lian, Y. Machine Learning Methods for Real-Time Blood Pressure Measurement Based on Photoplethysmography. In Proceedings of the 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), Shanghai, China, 19–21 November 2018. [Google Scholar] [CrossRef]
- Sasso, A.M.; Datta, S.; Jeitler, M.; Steckhan, N.; Kessler, S.C.; Michalsen, A.; Arnrich, B.; Böttinger, E. HYPE: Predicting Blood Pressure from Photoplethysmograms in a Hypertensive Population BT—Artificial Intelligence in Medicine; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Chowdhury, M.H.; Shuzan, N.I.; Chowdhury, M.E.; Mahbub, Z.B.; Uddin, M.M.; Khandakar, A.; Reaz, M.B.I. Estimating Blood Pressure from the Photoplethysmogram Signal and Demographic Features Using Machine Learning Techniques. Sensors 2020, 20, 3127. [Google Scholar] [CrossRef] [PubMed]
- Kurylyak, Y.; Lamonaca, F.; Grimaldi, D. A Neural Network-based method for continuous blood pressure estimation from a PPG signal. In Proceedings of the 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Minneapolis, MN, USA, 6–9 May 2013; pp. 280–283. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, W.; Xing, Y.; Zhou, X. A Novel Neural Network Model for Blood Pressure Estimation Using Photoplethesmography without Electrocardiogram. J. Healthc. Eng. 2018, 2018, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Manamperi, B.; Chitraranjan, C. A robust neural network-based method to estimate arterial blood pressure using photoplethysmography. In Proceedings of the 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE), Athens, Greece, 28–30 October 2019; pp. 681–685. [Google Scholar] [CrossRef]
- Hsu, Y.C.; Li, Y.H.; Chang, C.C.; Harfiya, L.N. Generalized deep neural network model for cuffless blood pressure estimation with photoplethysmogram signal only. Sensors 2020, 20, 5668. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Harfiya, L.N.; Purwandari, K.; der Lin, Y. Real-time cuffless continuous blood pressure estimation using deep learning model. Sensors 2020, 20, 5606. [Google Scholar] [CrossRef]
- Harfiya, L.N.; Chang, C.C.; Li, Y.H. Continuous blood pressure estimation using exclusively photoplethysmography by lstm-based signal-to-signal translation. Sensors 2021, 21, 2951. [Google Scholar] [CrossRef]
- Slapničar, G.; Mlakar, N.; Luštrek, M. Blood Pressure Estimation from Photoplethysmogram Using a Spectro-Temporal Deep Neural Network. Sensors 2019, 19, 3420. [Google Scholar] [CrossRef] [Green Version]
- Athaya, T.; Choi, S. An Estimation Method of Continuous Non-Invasive Arterial Blood Pressure Waveform Using Photoplethysmography: A U-Net Architecture-Based Approach. Sensors 2021, 21, 1867. [Google Scholar] [CrossRef]
- “U-Net: Convolutional Networks for Biomedical Image Segmentation” Lmb.informatik.uni-freiburg.de, 2021. Available online: https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/ (accessed on 8 October 2021).
- Ibtehaz, N.; Rahman, M.S. MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Netw. 2020, 121, 74–87. [Google Scholar] [CrossRef]
- Holm, S.W.; Cunningham, L.L.; Bensadoun, E.; Madsen, M.J. Hypertension: Classification, pathophysiology, and management during outpatient sedation and local anesthesia. J. Oral Maxillofac. Surg. 2006, 64, 111–121. [Google Scholar] [CrossRef]
- Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. UNet++: A nested u-net architecture for medical image segmentation. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Springer: New York, NY, USA, 2018; pp. 3–11. [Google Scholar]
- Esser, P.; Sutter, E. A Variational U-Net for Conditional Appearance and Shape Generation Heidelberg Collaboratory for Image Processing. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2018, 8857–8866. [Google Scholar]
- Zhang, Z.; Liu, Q.; Wang, Y. Road Extraction by Deep Residual U-Net. IEEE Geosci. Remote Sens. Lett. 2018, 15, 749–753. [Google Scholar] [CrossRef] [Green Version]
- Isensee, F.; Petersen, J.; Klein, A.; Zimmermer, D.; Jaeger, P.F.; Kohl, S.; Wasserthal, J.; Koehler, G.; Norajitra, T.; Wirkert, S.; et al. nnU-Net: Self-Adapting Framework for Unet-Based Medical Image Segmentation. arXiv 2018. Available online: https://arxiv.org/abs/1809.10486 (accessed on 17 October 2021).
- Iglovikov, V.; Shvets, A. TernausNet: U-Net with VGG11 Encoder Pre-Trained on Imagenet for Image Segmentation. arXiv 2018. Available online: https://arxiv.org/abs/1801.05746 (accessed on 17 October 2021).
- Stoller, D.; Ewert, S.; Dixon, S. Wave-U-Net: A multi-scale neural network for end-to-end audio source separation. In Proceedings of the 19th International Society for Music Information Retrieval Conference ISMIR 2018, Paris, France, 23–27 September 2018; pp. 334–340. [Google Scholar] [CrossRef]
- Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-net: Learning dense volumetric segmentation from sparse annotation. Lect. Notes Comput. Sci. 2016, 9901, 2016. [Google Scholar] [CrossRef] [Green Version]
- Hao, X.; Su, X.; Wang, Z.; Zhang, H. Batushiren Unetgan: A robust speech enhancement approach in the time domain for extremely low signal-to-noise ratio condition. In Proceedings of the Annual Conference of the International Speech Communication Association, Interspeech 2019, Graz, Austria, 15–19 September 2019; pp. 1786–1790. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Chang, J.H. Attention Wave-U-Net for acoustic echo cancellation. In Proceedings of the Annual Conference International Speech Communication Association. INTERSPEECH, Shanghai, China, 25–29 October 2020; pp. 3969–3973. [Google Scholar] [CrossRef]
- Wu, X.; Li, M.; Lin, X.; Wu, J.; Xi, Y.; Jin, X. Shallow triple Unet for shadow detection. In Proceedings of the Twelfth International Conference on Digital Image Processing, Osaka, Japan, 12 June 2020. [Google Scholar]
- Esmaelpoor, J.; Moradi, M.H.; Kadkhodamohammadi, A. A multistage deep neural network model for blood pressure estimation using photoplethysmogram signals. Comput. Biol. Med. 2020, 120, 103719. [Google Scholar] [CrossRef] [PubMed]
- Miao, F.; Wen, B.; Hu, Z.; Fortino, G.; Wang, X.P.; Liu, Z.D.; Tang, M.; Li, Y. Continuous blood pressure measurement from one-channel electrocardiogram signal using deep-learning techniques. Artif. Intell. Med. 2020, 108, 101919. [Google Scholar] [CrossRef] [PubMed]
- Qin, K.; Huang, W.; Zhang, T. Deep generative model with domain adversarial training for predicting arterial blood pressure waveform from photoplethysmogram signal. Biomed. Signal Processing Control. 2021, 70, 102972. [Google Scholar] [CrossRef]
- Shuzan, M.N.; Chowdhury, M.H.; Hossain, M.S.; Chowdhury, M.E.; Reaz, M.B.; Uddin, M.M.; Khandakar, A.; Mahbub, Z.B.; Ali, S.H. A Novel Non-Invasive Estimation of Respiration Rate From Motion Corrupted Photoplethysmograph Signal Using Machine Learning Model. IEEE Access 2021, 9, 96775–96790. [Google Scholar] [CrossRef]
- Dheeru, D.; Casey, G. UCI Machine Learning Repository. 2017. Archive.ics.uci.edu. Available online: http://archive.ics.uci.edu/ml (accessed on 2 October 2021).
- Archive.physionet.org. 2021. MIMIC-II Databases. [Online]. Available online: https://archive.physionet.org/mimic2/ (accessed on 8 October 2021).
- Physionet.org. 2021. MIMIC-III Waveform Database v1.0. Available online: https://physionet.org/content/mimic3wdb/1.0/ (accessed on 9 October 2021).
- Carlson, C.; Turpin, V.; Suliman, A.; Ade, C.; Warren, S.; Thompson, D. Bed-Based Ballistocardiography: Dataset and Ability to Track Cardiovascular Parameters. Sensors 2020, 21, 156. [Google Scholar] [CrossRef]
- “NI-9220”, Ni.com. 2021. Available online: https://www.ni.com/en-lb/support/model.ni-9220.html (accessed on 10 October 2021).
- Finapres.com. Finapres Medical Systems|Products—Finometer PRO, 2021. Available online: https://www.finapres.com/Products/Finometer-PRO (accessed on 11 October 2021).
- Moving minimum—MATLAB Movmin. Mathworks.com, 2021. Available online: https://www.mathworks.com/help/matlab/ref/movmin.html (accessed on 5 October 2021).
- Polynomial Curve Fitting—MATLAB Polyfit. Mathworks.com, 2021. Available online: https://www.mathworks.com/help/matlab/ref/polyfit.html (accessed on 12 October 2021).
- Polynomial Evaluation—MATLAB Polyval. Mathworks.com, 2021. Available online: https://www.mathworks.com/help/matlab/ref/polyval.html (accessed on 12 October 2021).
- Mohebbian, M.R.; Dinh, A.; Wahid, K.; Alam, M.S. Blind, Cuff-less, Calibration-Free and Continuous Blood Pressure Estimation using Optimized Inductive Group Method of Data Handling. Biomed. Signal Process. Control. 2019, 57, 101682. [Google Scholar] [CrossRef]
- Chakraborty, A.; Sadhukhan, D.; Mitra, M. An Automated Algorithm to Extract Time Plane Features from the PPG Signal and its Derivatives for Personal Health Monitoring Application. IETE J. Res. 2019, 1–13. [Google Scholar] [CrossRef]
- Elgendi, M.; Liang, Y.; Ward, R. Toward Generating More Diagnostic Features from Photoplethysmogram Waveforms. Diseases 2018, 6, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Differences and Approximate Derivatives—MATLAB Diff. Mathworks.com, 2021. Available online: https://www.mathworks.com/help/matlab/ref/diff.html (accessed on 27 October 2021).
- Take Derivatives of a Signal—MATLAB & Simulink. Mathworks.com, 2021. Available online: https://www.mathworks.com/help/signal/ug/take-derivatives-of-a-signal.html (accessed on 27 October 2021).
- Design Digital Filters, 2021. Mathworks—MATLAB Designfilt. Mathworks.com, 2021. Available online: https://www.mathworks.com/help/signal/ref/designfilt.html (accessed on 29 October 2021).
- Average Filter Delay (Group Delay)—MATLAB Grpdelay. Mathworks.com, 2021. Available online: https://www.mathworks.com/help/signal/ref/grpdelay.html#f7-916897_sep_shared-n (accessed on 5 November 2021).
- Mean Absolute Error (MAE)—Sample Calculation. Medium, 2021. Available online: https://medium.com/@ewuramaminka/mean-absolute-error-mae-sample-calculation-6eed6743838a (accessed on 18 January 2022).
- O’Brien, E.; Petrie, J.; Littler, W.; de Swiet, M.; Padfield, P.L.; Altman, D.; Bland, M.; Coats, A.; Atkins, N. The British hypertension society protocol for the evaluation of blood pressure measuring devices. J Hyper. Tens. 1993, 11, S43–S62. [Google Scholar]
- “ANSI/AAMI SP10:2002/(R)2008 and A1:2003/(R)2008 and A2:2006/(R)2008—Manual, Electronic, or Automated Sphygmomanometers”, Webstore.ansi.org, 2022. [Online]. Available online: https://webstore.ansi.org/standards/aami/ansiaamisp1020022008a12003a2 (accessed on 18 January 2022).
- Giavarina, D. Understanding Bland Altman analysis. Biochem. Med. 2015, 25, 141–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simple Linear Regression and Pearson Correlation—, Statsdirect.com, 2021. Available online: https://www.statsdirect.com/help/regression_and_correlation/simple_linear.htm (accessed on 28 October 2021).
- Sagirova, Z.; Kuznetsova, N.; Gogiberidze, N.; Gognieva, D.; Suvorov, A.; Chomakhidze, P.; Omboni, S.; Saner, H.; Kopylov, P. Cuffless Blood Pressure Measurement Using a Smartphone-Case Based ECG Monitor with Photoplethysmography in Hypertensive Patients. Sensors 2021, 21, 3525. [Google Scholar] [CrossRef]
- Baker, S.; Xiang, W.; Atkinson, I. A hybrid neural network for continuous and non-invasive estimation of blood pressure from raw electrocardiogram and photoplethysmogram waveforms. Comput. Methods Programs Biomed. 2021, 207, 106191. [Google Scholar] [CrossRef]
- Rong, M.; Li, K. A multi-type features fusion neural network for blood pressure prediction based on photoplethysmography. Biomed. Signal Processing Control. 2021, 68, 102772. [Google Scholar] [CrossRef]
- Tun, H. Photoplethysmography (PPG) Scheming System Based on Finite Impulse Response (FIR) Filter Design in Biomedical Applications. Int. J. Electr. Electron. Eng. Telecommun. 2021, 10, 272–282. Available online: http://www.ijeetc.com/index.php?m=content&c=index&a=show&catid=213&id=1525 (accessed on 5 October 2021). [CrossRef]
- Mahmud, S. “PPG-ECG-to-BP-Prediction-ABP-Estimation”, GitHub, 2021. [Online]. Available online: https://github.com/Sakib1263/PPG-ECG-to-BP-Prediction-ABP-Estimation (accessed on 18 January 2022).
Datasets | BP Parameters | Minimum | Maximum | Mean | Standard Deviation |
---|---|---|---|---|---|
UCI Dataset | SBP | 80.026 | 189.984 | 132.609 | 21.703 |
DBP | 50.000 | 119.927 | 63.705 | 9.978 | |
MAP | 57.941 | 149.062 | 87.228 | 12.737 | |
BCG Dataset | SBP | 80.313 | 186.641 | 124.535 | 15.237 |
DBP | 43.899 | 96.829 | 65.011 | 9.180 | |
MAP | 62.975 | 128.391 | 86.878 | 10.046 |
No. of Channels | Channels | Target | Total Samples in the Train Set | Total Samples in the Test Set |
---|---|---|---|---|
1 | PPG | ABP | 147,116 | 53,043 |
2 | PPG, ECG | ABP | 147,116 | 53,043 |
3 | PPG, VPG, APG | ABP | 147,116 | 53,043 |
4 | PPG, VPG, APG, ECG | ABP | 147,116 | 53,043 |
No. of Channels | Channels | Target | Total Samples in the Train Set from UCI | Total Samples in the Test Set from BCG |
---|---|---|---|---|
1 | PPG | ABP | 200,159 | 1872 |
2 | PPG, ECG | ABP | 200,159 | 1872 |
3 | PPG, VPG, APG | ABP | 200,159 | 1872 |
4 | PPG, VPG, APG, ECG | ABP | 200,159 | 1872 |
No. of Channels | Channels | Target | Total Samples in the Train Set | Total Samples in the Test Set |
---|---|---|---|---|
1 | PPG | ABP | 1498 | 374 |
2 | PPG, ECG | ABP | 1498 | 374 |
3 | PPG, VPG, APG | ABP | 1498 | 374 |
4 | PPG, VPG, APG, ECG | ABP | 1498 | 374 |
Fixed Parameters | Encoder Levels | MAE | |
---|---|---|---|
SBP | DBP | ||
Encoder Type: U-Net | 1 | 2.333 | 0.713 |
Encoder Width: 128 | 2 | 3.169 | 1.099 |
Kernel Size: 3 | 3 | 3.763 | 1.243 |
No. of Channels: 4 | 4 | 4.416 | 1.419 |
No. of Extracted Feature: 1024 | |||
Regressor: MLP |
Fixed Parameters | No. of Channels | MAE | |
---|---|---|---|
SBP | DBP | ||
Encoder Type: U-Net | 1 | 4.971 | 1.361 |
Encoder Depth: 1 | 2 | 2.513 | 0.825 |
Encoder Width: 128 | 3 | 2.739 | 0.960 |
Kernel Size: 3 | 4 | 2.333 | 0.713 |
No. of Extracted Feature: 1024 | |||
Regressor: MLP |
Fixed Parameters | Kernel Size | MAE | |
---|---|---|---|
SBP | DBP | ||
Encoder Type: U-Net | 1 | 2.387 | 0.876 |
Encoder Depth: 1 | 3 | 2.333 | 0.713 |
Encoder Width: 128 | 5 | 2.503 | 0.949 |
No. of Channels: 4 | 7 | 2.900 | 0.888 |
No. of Extracted Feature: 1024 | 9 | 3.421 | 1.568 |
Regressor: MLP | 11 | 4.544 | 1.388 |
Fixed Parameters | Regressor Algorithm | MAE for SBP | MAE for DBP |
---|---|---|---|
Encoder Type: U-Net Encoder Depth: 1 Encoder Width: 128 Kernel Size: 3 No. of Channels: 4 No. of Extracted Feature: 1024 | MLP | 2.333 | 0.713 |
GradBoost | 5.837 | 1.418 | |
SGD | 5.945 | 2.261 | |
SVM | 5.980 | 2.269 | |
XGBoost | 6.089 | 1.429 | |
K-Nearest Neighbor | 6.543 | 1.510 | |
AdaBoost | 8.584 | 2.234 |
Cumulative Error Percentage | ||||
---|---|---|---|---|
≤ | ≤ | ≤ | ||
Our Results | SBP | 92.02% | 99.18% | 99.85% |
DBP | 99.01% | 99.91% | 100.0% | |
BHS Metric | Grade A | 60% | 85% | 95% |
Grade B | 50% | 75% | 90% | |
Grade C | 40% | 65% | 85% |
Number of Subjects | ||||
---|---|---|---|---|
Our Results | SBP | 0.09 | 0.94 | 942 |
DBP | −0.019 | 2.876 | ||
AAMI Standard | ≤ | ≤ | ≥ |
Study | Year Published | Dataset | Input Signals | Method | MAE (mmHg) | |
---|---|---|---|---|---|---|
SBP | DBP | |||||
Kurylayak et al. [18] | 2013 | MIMIC, 15,000 Pulsations | PPG | ANN | 3.80 | 2.21 |
Wang et al. [19] | 2018 | MIMIC, 72 Subjects | PPG | ANN | 4.02 | 2.27 |
Slapničar et al. [24] | 2019 | MIMIC, 510 Subjects | PPG | CNN | 9.43 | 6.88 |
Miao et al. [40] | 2019 | 1711 ICU and 30 Arrythmia Patients | ECG | CNN + LSTM | 7.10 | 4.61 |
Esmaelpoor et al. [39] | 2020 | MIMIC-II (200 Subjects) | PPG | CNN + LSTM | 1.91 | 0.67 |
Ibtehaz et al. [13] | 2020 | MIMIC-II (942 Subjects) | PPG | CNN + CNN | 5.73 | 3.45 |
Li et al. [22] | 2020 | MIMIC-II (3000 Records from UCI Repository) | PPG, ECG | LSTM | 4.63 | 3.15 |
Hsu et al. [21] | 2020 | MIMIC-II (9000 Records from UCI Repository) | PPG, ECG | ANN | 3.21 | 2.23 |
Athaya et al. [25] | 2021 | MIMIC-II (100 Subjects) | PPG | CNN | 3.68 | 1.97 |
Harfiya et al. [23] | 2021 | MIMIC-II (5289 Records from UCI Repository) | PPG | LSTM | 4.05 | 2.41 |
Baker et al. [65] | 2021 | MIMIC-III | PPG, ECG | CNN + LSTM | 4.41 | 2.91 |
Rong et al. [66] | 2021 | MIMIC-II (UCI Repository) | PPG | CNN + LSTM | 5.59 | 3.36 |
Sagirova et al. [64] | 2021 | 512 Patients | ECG, PPG | |||
Qin et al. [41] | 2021 | MIMIC-II (1227 Records from UCI Repository) | PPG | VAE | 7.95 | 4.11 |
This Study | 2021 | MIMIC-II (942 Subjects–12,000 Recordings from UCI Repository) | PPG, ECG | CNN + ANN | 2.333 | 0.713 |
MIMIC-II + BCG (942 + 40 = 982 Subjects) | 2.728 | 1.166 | ||||
AAMI Standard | ≤ |
Study | SBP (%) in BHS Metrics | DBP (%) in BHS Metrics | ||||||
---|---|---|---|---|---|---|---|---|
Grade A | Grade B | Grade C | Attained Grade | Grade A | Grade B | Grade C | Attained Grade | |
Esmaelpoor et al. [39] | 74 | 94 | 98 | A | 93 | 99 | 100 | A |
Ibtehaz et al. [13] | 71 | 85 | 91 | B | 83 | 92 | 96 | A |
Li et al. [22] | 60 | 80 | 89 | B | 77 | 96 | 100 | A |
Hsu et al. [21] | 81 | 96 | 98 | A | 90 | 98 | 100 | A |
Athaya et al. [25] | 76 | 94 | 99 | A | 94 | 99 | 100 | A |
Harfiya et al. [23] | 71 | 94 | 99 | A | 91 | 99 | 100 | A |
Miao et al. [40] | 50 | 76 | 90 | B | 66 | 90 | 97 | A |
Baker et al. [65] | 68 | 90 | 97 | A | 83 | 96 | 99 | A |
Rong et al. [66] | 54 | 87 | 94 | B | 83 | 95 | 98 | A |
Qin et al. [41] | 59 | 86 | 95 | B | 82 | 96 | 99 | A |
This Study | 92 | 99 | 99 | A | 99 | 100 | 100 | A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmud, S.; Ibtehaz, N.; Khandakar, A.; Tahir, A.M.; Rahman, T.; Islam, K.R.; Hossain, M.S.; Rahman, M.S.; Musharavati, F.; Ayari, M.A.; et al. A Shallow U-Net Architecture for Reliably Predicting Blood Pressure (BP) from Photoplethysmogram (PPG) and Electrocardiogram (ECG) Signals. Sensors 2022, 22, 919. https://doi.org/10.3390/s22030919
Mahmud S, Ibtehaz N, Khandakar A, Tahir AM, Rahman T, Islam KR, Hossain MS, Rahman MS, Musharavati F, Ayari MA, et al. A Shallow U-Net Architecture for Reliably Predicting Blood Pressure (BP) from Photoplethysmogram (PPG) and Electrocardiogram (ECG) Signals. Sensors. 2022; 22(3):919. https://doi.org/10.3390/s22030919
Chicago/Turabian StyleMahmud, Sakib, Nabil Ibtehaz, Amith Khandakar, Anas M. Tahir, Tawsifur Rahman, Khandaker Reajul Islam, Md Shafayet Hossain, M. Sohel Rahman, Farayi Musharavati, Mohamed Arselene Ayari, and et al. 2022. "A Shallow U-Net Architecture for Reliably Predicting Blood Pressure (BP) from Photoplethysmogram (PPG) and Electrocardiogram (ECG) Signals" Sensors 22, no. 3: 919. https://doi.org/10.3390/s22030919