Comparison of Machine Learning Algorithms in the Prediction of Hospitalized Patients with Schizophrenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database
2.2. System Architecture
Algorithms of Machine Learning
- Select “k” features from total “m” features at random where k < m;
- Calculate the node “d” through the better split point among “k” feature;
- Split the node into child nodes through the better split;
- While “l” number of nodes has been done, redo steps 1 to 3;
- Create forest by doing steps 1 to 4 by “n” times to build “n” set of trees.
3. Results
3.1. Data Analysis
3.2. Model Evaluation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pachange, S.; Joglekar, B.; Kulkarni, P. An ensemble classifier approach for disease diagnosis using Random Forest. In Proceedings of the 2015 Annual IEEE India Conference (INDICON), New Delhi, India, 17–20 December 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, X.; Li, W.; Hu, X.; Qu, X.; Cao, X.; Liu, Y.; Lu, J. Applying Machine Learning to Identify Autism with Restricted Kinematic Features. IEEE Access 2019, 7, 157614–157622. [Google Scholar] [CrossRef]
- Hou, C.; Zhong, X.; He, P.; Xu, B.; Diao, S.; Yi, F.; Zheng, H.; Li, J. Predicting Breast Cancer in Chinese Women Using Machine Learning Techniques: Algorithm Development. JMIR Med. Inform. 2020, 8, e17364. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.; Taha, B.; Bakken, S. Using a Data Mining Approach to Discover Behavior Correlates of Chronic Disease: A Case Study of Depression. Stud. Health Technol. Inform. 2014, 201, 71–78. [Google Scholar] [CrossRef]
- Awad, A.; Bader-El-Den, M.; McNicholas, J.; Briggs, J. Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach. Int. J. Med. Inform. 2017, 108, 185–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tai, A.M.Y.; Albuquerque, A.; Carmona, N.E.; Subramanieapillai, M.; Cha, D.S.; Sheko, M.; Lee, Y.; Mansur, R.; McIntyre, R.S. Machine learning and big data: Implications for disease modeling and therapeutic discovery in psychiatry. Artif. Intell. Med. 2019, 99, 101704. [Google Scholar] [CrossRef] [PubMed]
- Dhaka, P.; Johari, R. Big data application: Study and archival of mental health data, using MongoDB. In Proceedings of the 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, India, 3–5 March 2016; pp. 3228–3232. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, Q.; Li, W.; Li, M.; Yip, P.S.F. Individualized prediction of depressive disorder in the elderly: A multitask deep learning approach. Int. J. Med. Inform. 2019, 132, 103973. [Google Scholar] [CrossRef]
- Charlson, F.J.; Ferrari, A.J.; Santomauro, D.F.; Diminic, S.; Stockings, E.; Scott, J.G.; McGrath, J.; Whiteford, H.A. Global Epidemiology and Burden of Schizophrenia: Findings from the Global Burden of Disease Study 2016. Schizophr. Bull. 2018, 44, 1195–1203. [Google Scholar] [CrossRef]
- Orrico-Sánchez, A.; López-Lacort, M.; Muñoz-Quiles, C.; Sanfélix-Gimeno, G.; Díez-Domingo, J. Epidemiology of schizophrenia and its management over 8-years period using real-world data in Spain. BMC Psychiatry 2020, 20, 149. [Google Scholar] [CrossRef] [Green Version]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; Elsevier: Washington, DC, USA, 2013. [Google Scholar]
- Kendler, K.S. Phenomenology of Schizophrenia and the Representativeness of Modern Diagnostic Criteria. JAMA Psychiatry 2016, 73, 1082–1092. [Google Scholar] [CrossRef]
- GeethaRamani, R.; Sivaselvi, K. Data mining technique for identification of diagnostic biomarker to predict Schizophrenia disorder. In Proceedings of the 2014 IEEE International Conference on Computational Intelligence and Computing Research, Coimbatore, India, 18–20 December 2014; pp. 1–8. [Google Scholar] [CrossRef]
- Allende-Cid, H.; Zamora, J.; Alfaro-Faccio, P.; Alonso-Sanchez, M.F. A Machine Learning Approach for the Automatic Classification of Schizophrenic Discourse. IEEE Access 2019, 7, 45544–45553. [Google Scholar] [CrossRef]
- Lurie, I.; Shoval, G.; Hoshen, M.; Balicer, R.; Weiser, M.; Weizman, A.; Krivoy, A. The association of medical resource utilization with physical morbidity and premature mortality among patients with schizophrenia: An historical prospective population cohort study. Schizophr. Res. 2021, 237, 62–68. [Google Scholar] [CrossRef] [PubMed]
- De Pedro Cuesta, J.; Saiz Ruiz, J.; Roca, M.; Noguer, I. Mental health and public health in Spain: Epidemiological surveillance and prevention. Psiquiatr. Biol. 2016, 23, 67–73. [Google Scholar] [CrossRef] [Green Version]
- McGrath, J.; Saha, S.; Chant, D.; Welham, J. Schizophrenia: A Concise Overview of Incidence, Prevalence, and Mortality. Epidemiol. Rev. 2008, 30, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Hor, K.; Taylor, M. Suicide and schizophrenia: A systematic review of rates and risk factors. J. Psychopharmacol. 2010, 24 (Suppl. 4), 81–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L. EEG Signals Classification Using Machine Learning for The Identification and Diagnosis of Schizophrenia. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 4521–4524. [Google Scholar] [CrossRef]
- Chen, Z.H.; Yan, T.; Wang, E.L.; Jiang, H.; Tang, Y.Q.; Yu, X.; Zhang, J.; Liu, C. Detecting Abnormal Brain Regions in Schizophrenia Using Structural MRI via Machine Learning. Comput. Intell. Neurosci. 2020, 2020, 6405930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, H.; Mosweu, I. The Societal Cost of Schizophrenia: A Systematic Review. PharmacoEconomics 2017, 35, 25–42. [Google Scholar] [CrossRef]
- Kovacs, G.; Almasi, T.; Millier, A.; Toumi, M.; Horváth, M.; Kóczián, K.; Götze, A.; Kaló, Z.; Zemplenyi, A.T. Direct healthcare cost of schizophrenia—European overview. Eur. Psychiatry 2018, 48, 79–92. [Google Scholar] [CrossRef]
- Tovar, D.; Cornejo, E.; Xanthopoulos, P.; Guarracino, M.R.; Pardalos, P.M. Data Mining in Psychiatric Research. Psychiatr. Disord. 2012, 829, 593–603. [Google Scholar] [CrossRef]
- Bari Antor, M.; Jamil, A.H.M.; Mamtaz, M.; Monirujjaman Khan, M.; Aljahdali, S.; Kaur, M.; Singh, P.; Masud, M. A Comparative Analysis of Machine Learning Algorithms to Predict Alzheimer’s Disease. J. Healthc. Eng. 2021, 2021, 9917919. [Google Scholar] [CrossRef]
- Bhagya Shree, S.R.; Sheshadri, H.S. An initial investigation in the diagnosis of Alzheimer’s disease using various classification techniques. In Proceedings of the 2014 IEEE International Conference on Computational Intelligence and Computing Research, Coimbatore, India, 18–20 December 2014; pp. 1–5. [Google Scholar]
- Sheshadri, H.S.; Shree, S.R.B.; Krishna, M. Diagnosis of Alzheimer’s Disease Employing Neuropsychological and Classification Techniques. In Proceedings of the 2015 5th International Conference on IT Convergence and Security (ICITCS), Kuala Lumpur, Malaysia, 24–27 August 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Tejeswinee, K.; Shomona, G.J.; Athilakshmi, R. Feature Selection Techniques for Prediction of Neuro-Degenerative Disorders: A Case-Study with Alzheimer’s and Parkinson’s Disease. Procedia Comput. Sci. 2017, 115, 188–194. [Google Scholar] [CrossRef]
- Byeon, H. A Prediction Model for Mild Cognitive Impairment Using Random Forests. Int. J. Adv. Comput. Sci. Appl. 2015, 6, 8–12. [Google Scholar] [CrossRef]
- Cao, H.; Meyer-Lindenberg, A.; Schwarz, E. Comparative Evaluation of Machine Learning Strategies for Analyzing Big Data in Psychiatry. Int. J. Mol. Sci. 2018, 19, 3387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thabtah, F.; Kamalov, F.; Rajab, K. A new computational intelligence approach to detect autistic features for autism screening. Int. J. Med. Inform. 2018, 117, 112–124. [Google Scholar] [CrossRef] [PubMed]
- Bersimis, F.G.; Varlamis, I. Use of health-related indices and classification methods in medical data. In Classification Techniques for Medical Image Analysis and Computer Aided Diagnosis; Elsevier Inc.: San Diego, CA, USA, 2019. [Google Scholar] [CrossRef]
- Alabi, R.O.; Elmusrati, M.; Sawazaki-Calone, I.; Kowalski, L.P.; Haglund, C.; Coletta, R.D.; Mäkitie, A.A.; Salo, T.; Almangush, A.; Leivo, I. Comparison of supervised machine learning classification techniques in prediction of locoregional recurrences in early oral tongue cancer. Int. J. Med. Inform. 2020, 136, 104068. [Google Scholar] [CrossRef] [PubMed]
- Kwakernaak, S.; van Mens, K.; Cahn, W.; Janssen, R. Using machine learning to predict mental healthcare consumption in non-affective psychosis. Schizophr. Res. 2020, 218, 166–172. [Google Scholar] [CrossRef]
- Berardelli, I.; Rogante, E.; Sarubbi, S.; Erbuto, D.; Lester, D.; Pompili, M. The Importance of Suicide Risk Formulation in Schizophrenia. Front. Psychiatry 2021, 12, 779684. [Google Scholar] [CrossRef]
- Hettige, N.C.; Nguyen, T.B.; Yuan, C.; Rajakulendran, T.; Baddour, J.; Bhagwat, N.; Bani-Fatemi, A.; Voineskos, A.N.; Chakravarty, M.M.; De Luca, V. Classification of suicide attempters in schizophrenia using sociocultural and clinical features: A machine learning approach. Gen. Hosp. Psychiatry 2017, 47, 20–28. [Google Scholar] [CrossRef]
- Almutairi, M.M.; Alhamad, N.; Alyami, A.; Alshobbar, Z.; Alfayez, H.; Al-Akkas, N.; Alhiyafi, J.A.; Olatunji, S.O. Preemptive Diagnosis of Schizophrenia Disease Using Computational Intelligence Techniques. In Proceedings of the 2019 2nd International Conference on Computer Applications & Information Security (ICCAIS), Riyadh, Saudi Arabia, 1–3 May 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Shim, M.; Hwang, H.-J.; Kim, D.-W.; Lee, S.-H.; Im, C.-H. Machine-learning-based diagnosis of schizophrenia using combined sensor-level and source-level EEG features. Schizophr. Res. 2016, 176, 314–319. [Google Scholar] [CrossRef]
- Jo, Y.T.; Joo, S.W.; Shon, S.H.; Kim, H.; Kim, Y.; Lee, J. Diagnosing schizophrenia with network analysis and a machine learning method. Int. J. Methods Psychiatr. Res. 2020, 29, e1818. [Google Scholar] [CrossRef]
- Khan, S.I.; Islam, A.; Hossen, A.; Zahangir, T.I.; Hoque, A.S.M.L. Supporting the Treatment of Mental Diseases using Data Mining. In Proceedings of the 2018 International Conference on Innovations in Science, Engineering and Technology (ICISET), Chittagong, Bangladesh, 27–28 October 2018; pp. 339–344. [Google Scholar]
- Deng, Y.; Hung, K.S.Y.; Lui, S.S.Y.; Chui, W.W.H.; Lee, J.C.W.; Wang, Y.; Li, Z.; Mak, H.K.F.; Sham, P.C.; Chan, R.C.K.; et al. Tractography-based classification in distinguishing patients with first-episode schizophrenia from healthy individuals. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2019, 88, 66–73. [Google Scholar] [CrossRef]
- Lee, J.; Chon, M.-W.; Kim, H.; Rathi, Y.; Bouix, S.; Shenton, M.E.; Kubicki, M. Diagnostic value of structural and diffusion imaging measures in schizophrenia. NeuroImage Clin. 2018, 18, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Wu, X.; Xu, B.; Zhao, Z.; Yang, J.; Long, J.; Su, L. The machine learning algorithm for the diagnosis of schizophrenia on the basis of gene expression in peripheral blood. Neurosci. Lett. 2021, 745, 135596. [Google Scholar] [CrossRef] [PubMed]
- Jahmunah, V.; Oh, S.L.; Rajinikanth, V.; Ciaccio, E.J.; Cheong, K.H.; Arunkumar, N.; Acharya, U.R. Automated detection of schizophrenia using nonlinear signal processing methods. Artif. Intell. Med. 2019, 100, 101698. [Google Scholar] [CrossRef] [PubMed]
- Johannesen, J.K.; Bi, J.; Jiang, R.; Kenney, J.G.; Chen, C.-M.A. Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults. Neuropsychiatr. Electrophysiol. 2016, 2, 3. [Google Scholar] [CrossRef] [Green Version]
- Santos-Mayo, L.; San-José-Revuelta, L.M.; Arribas, J.I. A Computer-Aided Diagnosis System with EEG Based on the P3b Wave During an Auditory Odd-Ball Task in Schizophrenia. IEEE Trans. Biomed. Eng. 2017, 64, 395–407. [Google Scholar] [CrossRef]
- Lin, E.; Lin, C.-H.; Lane, H.-Y. A bagging ensemble machine learning framework to predict overall cognitive function of schizo-phrenia patients with cognitive domains and tests. Asian J. Psychiatr. 2022, 69, 103008. [Google Scholar] [CrossRef]
- Bae, Y.J.; Shim, M.; Lee, W.H. Schizophrenia Detection Using Machine Learning Approach from Social Media Content. Sensors 2021, 21, 5924. [Google Scholar] [CrossRef]
- Birnbaum, M.L.; Ernala, S.K.; Rizvi, A.F.; De Choudhury, M.; Kane, J.M. A Collaborative Approach to Identifying Social Media Markers of Schizophrenia by Employing Machine Learning and Clinical Appraisals. J. Med. Internet Res. 2017, 19, e289. [Google Scholar] [CrossRef]
- Wang, K.Z.; Bani-Fatemi, A.; Adanty, C.; Harripaul, R.; Griffiths, J.; Kolla, N.; Gerretsen, P.; Graff, A.; De Luca, V. Prediction of physical violence in schizophrenia with machine learning algorithms. Psychiatry Res. 2020, 289, 112960. [Google Scholar] [CrossRef]
- Alonso, S.G.; De La Torre-Díez, I.; Hamrioui, S.; López-Coronado, M.; Barreno, D.C.; Nozaleda, L.M.; Franco, M. Data Mining Algorithms and Techniques in Mental Health: A Systematic Review. J. Med. Syst. 2018, 42, 161. [Google Scholar] [CrossRef]
- Alonso, S.G.; Sainz-De-Abajo, B.; De La Torre-Díez, I.; Franco-Martin, M. Health Care Management Models for the Evolution of Hospitalization in Acute Inpatient Psychiatry Units: Comparative Quantitative Study. JMIR Ment. Health 2020, 7, e15776. [Google Scholar] [CrossRef] [PubMed]
- Commission on Professional and Hospital Activities. The International Classification of Diseases, 9th Revision, Clinical Modi-Fication. 2014. Available online: https://www.msssi.gob.es/estadEstudios/estadisticas/docs/CIE9MC_2014_def_accesible.pdf (accessed on 6 May 2021).
- CRAN.R-Project. Dplyr Package. Available online: https://cran.r-project.org/package=dplyr (accessed on 10 September 2021).
- CRAN.R-Project. Tidyr Package. Available online: https://cran.r-project.org/package=tidyr (accessed on 10 September 2021).
- Zamora Saiz, A.; Quesada González, C.; Hurtado Gil, L.; Mondéjar Ruiz, D. Data Analysis with R. In An Introd to Data Anal R; Springer: Cham, Switzerland, 2020; pp. 183–271. [Google Scholar] [CrossRef]
- Singh, D.; Singh, B. Investigating the impact of data normalization on classification performance. Appl. Soft Comput. 2020, 97, 105524. [Google Scholar] [CrossRef]
- Breiman, L. Random Forest. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Kaur, H.; Kumari, V. Predictive modelling and analytics for diabetes using a machine learning approach. Appl. Comput. Inform. 2022, 18, 90–100. [Google Scholar] [CrossRef]
- Abou-Warda, H.; Belal, N.A.; El-Sonbaty, Y.; Darwish, S. A Random Forest Model for Mental Disorders Diagnostic Systems. In Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2016, Cairo, Egypt, 24–26 October 2016; Springer: Cham, Switzerland, 2017; pp. 670–680. [Google Scholar] [CrossRef]
- Dvey-Aharon, Z.; Fogelson, N.; Peled, A.; Intrator, N. Schizophrenia Detection and Classification by Advanced Analysis of EEG Recordings Using a Single Electrode Approach. PLoS ONE 2015, 10, e0123033. [Google Scholar] [CrossRef] [Green Version]
- Kalmady, S.V.; Greiner, R.; Agrawal, R.; Shivakumar, V.; Narayanaswamy, J.C.; Brown, M.R.G.; Greenshaw, A.J.; Dursun, S.M.; Venkatasubramanian, G. Towards artificial intelligence in mental health by improving schizophrenia prediction with multiple brain parcellation ensemble-learning. NPJ Schizophr. 2019, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Yang, Z.; Chakraborty, D.; Tahir, Y.; Maszczyk, T.; Chua, V.Y.H.; Dauwels, J.; Thalmann, D.; Thalmann, N.M.; Tan, B.-L.; et al. Automatic Verbal Analysis of Interviews with Schizophrenic Patients. In Proceedings of the 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), Shanghai, China, 19–21 November 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Walsh-Messinger, J.; Jiang, H.; Lee, H.; Rothman, K.; Ahn, H.; Malaspina, D. Relative importance of symptoms, cognition, and other multilevel variables for psychiatric disease classifications by machine learning. Psychiatry Res. 2019, 278, 27–34. [Google Scholar] [CrossRef]
Variables | Information Gain | Gain Ratio | Gini | X2 | ReliefF |
---|---|---|---|---|---|
Diag_Sec02_Code | 0.047 | 0.023 | 0.032 | 128.578 | 0.012 |
Diag_Sec03_Code | 0.014 | 0.007 | 0.010 | 0.044 | 0.006 |
Diag_Sec04_Code | 0.011 | 0.006 | 0.008 | 91.753 | 0.004 |
Diag_Sec05_Code | 0.016 | 0.010 | 0.011 | 269.514 | 0.003 |
Diag_Sec06_Code | 0.014 | 0.012 | 0.010 | 331.083 | 0.019 |
Stays_Days | 0.009 | 0.005 | 0.007 | 128.946 | −0.0003 |
Age | 0.025 | 0.012 | 0.017 | 310.541 | 0.012 |
Gender | 0.069 | 0.070 | 0.047 | 623.212 | - |
Admission_Type | 0.0004 | 0.002 | 0.0003 | 0.238 | −0.002 |
Proc_Ppal_Code | 0.005 | 0.003 | 0.004 | 49.338 | 0.015 |
Proc_Sec02_Code | 0.005 | 0.003 | 0.003 | 100.140 | −0.014 |
Proc_Sec03_Code | 0.004 | 0.004 | 0.003 | 96.206 | −0.005 |
Algorithms | Parameters |
---|---|
Random Forest | Number of trees = 10 |
Maximum number of considered features: unlimited | |
Maximum tree depth: unlimited | |
Stop splitting nodes with maximum instances = 5 | |
AdaBoost | Base estimator: tree |
Number of estimators = 50 | |
Decision Tree | Minimum number of instances in leaves = 2 |
Minimum number of instances in internal nodes = 5 | |
Maximum depth = 100 | |
kNN | Number of neighbours = 5 |
Distance metric: Euclidean | |
Weight: Uniform | |
Naïve Bayes | fL = 0 |
usekernel: False | |
adjust = 0 | |
SVM | C = 1.0 |
sigma = 0.5 | |
Numerical tolerance = 0.001 | |
Iteration limit = 100 |
Variables | Total (N = 11,884 Admission Records) | |
---|---|---|
n = 5968 Records Schizophrenia | n = 5916 Records Non-Schizophrenia | |
Gender (%) | ||
Male | 71.0 | 40.6 |
Female | 29.0 | 59.4 |
Age, mean (years) | 43 | 49 |
<18 years | 10 | 36 |
18–30 years | 1048 | 737 |
31–45 years | 2493 | 1756 |
46–60 years | 1624 | 1844 |
>60 years | 793 | 1543 |
Days of stay, mean (days) | 17 | 14 |
Main diagnoses of the predictive variable Diag_Sec02_Code for records with schizophrenia | ||
Non-compliance with medical treatment | 473 | 130 |
Tobacco abuse disorders | 353 | 111 |
Family record of psychiatric disease | 229 | 118 |
Abuse of continuous cannabis | 200 | 70 |
Alcohol abuse | 159 | 86 |
Main diagnoses of the predictive variable Diag_Sec02_Code for records without schizophrenia | ||
Dysthymic disorder | 19 | 687 |
Personality disorder | 75 | 265 |
Neom arterial hypertension | 140 | 177 |
Personality histrionic disorder | 4 | 167 |
Psychosis | 40 | 162 |
Algorithms | AUC | Accuracy | Precision | F1-Score | Recall |
---|---|---|---|---|---|
Random Forest | 0.796 | 0.727 | 0.728 | 0.727 | 0.727 |
AdaBoost | 0.765 | 0.708 | 0.708 | 0.708 | 0.708 |
Decision Tree | 0.682 | 0.682 | 0.682 | 0.681 | 0.681 |
k-NN | 0.729 | 0.677 | 0.676 | 0.676 | 0.676 |
Naïve Bayes | 0.729 | 0.670 | 0.671 | 0.669 | 0.670 |
SVM | 0.641 | 0.657 | 0.657 | 0.657 | 0.657 |
Reference | Method | Validation | Dataset | AUC | Accuracy (%) |
---|---|---|---|---|---|
[35] | Random Forest | Cross-Validation k = 10 | N = 345 patients | 0.67 | 66.00 |
[36] | Random Forest Naïve Bayes SVM | Cross-Validation k = 10 | N = 86 patients | - | 90.69 |
[37] | SVM | Leave-One-Out Cross-Validation (LOOCV) | N = 68 patients | - | 78.24 |
[38] | Random Forest | Cross-Validation k = 10 | N = 72 patients | 0.68 | 68.60 |
[39] | Random Forest | Cross-Validation | N = 466 patients | - | 85.10 |
Our study | Random Forest | Cross-Validation k = 10 | N = 6933 patients | 0.79 | 72.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Góngora Alonso, S.; Marques, G.; Agarwal, D.; De la Torre Díez, I.; Franco-Martín, M. Comparison of Machine Learning Algorithms in the Prediction of Hospitalized Patients with Schizophrenia. Sensors 2022, 22, 2517. https://doi.org/10.3390/s22072517
Góngora Alonso S, Marques G, Agarwal D, De la Torre Díez I, Franco-Martín M. Comparison of Machine Learning Algorithms in the Prediction of Hospitalized Patients with Schizophrenia. Sensors. 2022; 22(7):2517. https://doi.org/10.3390/s22072517
Chicago/Turabian StyleGóngora Alonso, Susel, Gonçalo Marques, Deevyankar Agarwal, Isabel De la Torre Díez, and Manuel Franco-Martín. 2022. "Comparison of Machine Learning Algorithms in the Prediction of Hospitalized Patients with Schizophrenia" Sensors 22, no. 7: 2517. https://doi.org/10.3390/s22072517
APA StyleGóngora Alonso, S., Marques, G., Agarwal, D., De la Torre Díez, I., & Franco-Martín, M. (2022). Comparison of Machine Learning Algorithms in the Prediction of Hospitalized Patients with Schizophrenia. Sensors, 22(7), 2517. https://doi.org/10.3390/s22072517