Image Sensing and Processing with Convolutional Neural Networks
Conflicts of Interest
References
- Tchendjou, G.T.; Simeu, E. Visual Perceptual Quality Assessment Based on Blind Machine Learning Techniques. Sensors 2021, 22, 175. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, Z.; Dong, L.; Xu, G. Jitter Detection and Image Restoration Based on Generative Adversarial Networks in Satellite Images. Sensors 2021, 21, 4693. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Huang, L.; Hong, Z.; Cao, S.; Zhang, Y.; Wang, J. Deep Supervised Residual Dense Network for Underwater Image Enhancement. Sensors 2021, 21, 3289. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Yang, F.; Sadovnik, A. MSDU-Net: A Multi-Scale Dilated U-Net for Blur Detection. Sensors 2021, 21, 1873. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Lu, G. Deeply Recursive Low- and High-Frequency Fusing Networks for Single Image Super-Resolution. Sensors 2020, 20, 7268. [Google Scholar] [CrossRef] [PubMed]
- Córdova, M.; Pinto, P.; Hellevik, C.C.; Alaliyat, S.A.-A.; Hameed, I.A.; Pedrini, P.; Torres, R. Litter Detection with Deep Learning: A Comparative Study. Sensors 2022, 22, 548. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.-C.; Chang, H.-C. Forecasting of Typhoon-Induced Wind-Wave by Using Convolutional Deep Learning on Fused Data of Remote Sensing and Ground Measurements. Sensors 2021, 21, 5234. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Wu, B.; Zhang, M.; Zeng, H.; Tian, F. Identification of Crop Type in Crowdsourced Road View Photos with Deep Convolutional Neural Network. Sensors 2021, 21, 1165. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Chen, B.; Qin, J. A CNN-Based Length-Aware Cascade Road Damage Detection Approach. Sensors 2021, 21, 689. [Google Scholar] [CrossRef] [PubMed]
- Chou, J.-S.; Liu, C.-H. Automated Sensing System for Real-Time Recognition of Trucks in River Dredging Areas Using Computer Vision and Convolutional Deep Learning. Sensors 2021, 21, 555. [Google Scholar] [CrossRef] [PubMed]
- Anand, A.; Rani, S.; Anand, D.; Aljahdali, H.M.; Kerr, D. An Efficient CNN-Based Deep Learning Model to Detect Malware Attacks (CNN-DMA) in 5G-IoT Healthcare Applications. Sensors 2021, 21, 6346. [Google Scholar] [CrossRef] [PubMed]
- Barros, B.; Lacerda, P.; Albuquerque, C.; Conci, A. Pulmonary COVID-19: Learning Spatiotemporal Features Combining CNN and LSTM Networks for Lung Ultrasound Video Classification. Sensors 2021, 21, 5486. [Google Scholar] [CrossRef] [PubMed]
- Park, I.; Lee, U. Automatic, Qualitative Scoring of the Clock Drawing Test (CDT) Based on U-Net, CNN and Mobile Sensor Data. Sensors 2021, 21, 5239. [Google Scholar] [CrossRef] [PubMed]
- Alsamadony, K.L.; Yildirim, E.U.; Glatz, G.; Waheed, U.B.; Hanafy, S.M. Deep Learning Driven Noise Reduction for Reduced Flux Computed Tomography. Sensors 2021, 21, 1921. [Google Scholar] [CrossRef] [PubMed]
- Ankita; Rani, S.; Babbar, H.; Coleman, S.; Singh, A.; Aljahdali, H.M. An Efficient and Lightweight Deep Learning Model for Human Activity Recognition Using Smartphones. Sensors 2021, 21, 3845. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wang, F.; Ru, C.; Jiang, Y.; Li, J. Keypoint-Based Robotic Grasp Detection Scheme in Multi-Object Scenes. Sensors 2021, 21, 2132. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coleman, S.; Kerr, D.; Zhang, Y. Image Sensing and Processing with Convolutional Neural Networks. Sensors 2022, 22, 3612. https://doi.org/10.3390/s22103612
Coleman S, Kerr D, Zhang Y. Image Sensing and Processing with Convolutional Neural Networks. Sensors. 2022; 22(10):3612. https://doi.org/10.3390/s22103612
Chicago/Turabian StyleColeman, Sonya, Dermot Kerr, and Yunzhou Zhang. 2022. "Image Sensing and Processing with Convolutional Neural Networks" Sensors 22, no. 10: 3612. https://doi.org/10.3390/s22103612