A Novel Deep Supervised Learning-Based Approach for Intrusion Detection in IoT Systems
Abstract
:1. Introduction
1.1. Rekated Works
1.2. Paper Contributions
- We improve a novel meta-heuristic algorithm named NSBPSO, in which new concepts such as employed bees, onlooker bees, and the multi-parent crossover of bees are introduced to better the exploitation and exploration abilities of the PSO algorithm.
- We optimally improve the performance of the DCNN as our NIDS by updating its optimization parameters using the NSBPSO algorithm.
1.3. Paper Organization
2. The Proposed NSBPSO Algorithm
3. The Proposed IoT IDS Using the NSBPSO-Based Deep Architecture
3.1. Datasets
3.1.1. UNSW-NB15 Dataset
3.1.2. Bot-IoT Dataset
3.2. Training Deep Architecture Using the NSBPSO Algorithm
4. Simulation Results on the NID Datasets
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, S.K.; Bae, M.; Kim, H. Future of IoT Networks: A Survey. Appl. Sci. 2017, 7, 1072. [Google Scholar] [CrossRef]
- Da Xu, L.; He, W.; Li, S. Internet of things in industries: A survey. IEEE Trans. Ind. Inform. 2014, 10, 2233–2243. [Google Scholar]
- Dai, H.-N.; Zheng, Z.; Zhang, Y. Blockchain for Internet of Things: A Survey. IEEE Internet Things J. 2019, 6, 8076–8094. [Google Scholar] [CrossRef] [Green Version]
- Belli, L.; Cirani, S.; Davoli, L.; Gorrieri, A.; Mancin, M.; Picone, M.; Ferrari, G. Design and Deployment of an IoT Application-Oriented Testbed. Computer 2015, 48, 32–40. [Google Scholar] [CrossRef]
- Xu, L.; Zhou, X.; Tao, Y.; Liu, L.; Yu, X.; Kumar, N. Intelligent Security Performance Prediction for IoT-Enabled Healthcare Networks Using an Improved CNN. IEEE Trans. Ind. Inform. 2021, 18, 2063–2074. [Google Scholar] [CrossRef]
- Putra, G.D.; Dedeoglu, V.; Kanhere, S.S.; Jurdak, R.; Ignjatovic, A. Trust-based blockchain authorization for iot. IEEE Trans. Netw. Serv. Manag. 2021, 18, 1646–1658. [Google Scholar] [CrossRef]
- Agarwal, V.; Sharma, S.; Agarwal, P. IoT Based Smart Transport Management and Vehicle-to-Vehicle Communication System. In Computer Networks, Big Data and IoT; Springer: Singapore, 2021; pp. 709–716. [Google Scholar]
- Mukhopadhyay, S.C.; Tyagi, S.K.S.; Suryadevara, N.K.; Piuri, V.; Scotti, F.; Zeadally, S. Artificial Intelligence-Based Sensors for Next Generation IoT Applications: A Review. IEEE Sens. J. 2021, 21, 24920–24932. [Google Scholar] [CrossRef]
- Sharda, S.; Singh, M.; Sharma, K. Demand side management through load shifting in IoT based HEMS: Overview, challenges and opportunities. Sustain. Cities Soc. 2021, 65, 102517. [Google Scholar] [CrossRef]
- Vadera, M.P.; Marlin, B.M. Challenges and Opportunities in Approximate Bayesian Deep Learning for Intelligent IoT Systems. arXiv 2021, arXiv:2112.01675. [Google Scholar]
- Dawson, L.; Akinbi, A. Challenges and opportunities for wearable IoT forensics: TomTom Spark 3 as a case study. Forensic Sci. Int. Rep. 2021, 3, 100198. [Google Scholar] [CrossRef]
- Reyna, A.; Martín, C.; Chen, J.; Soler, E.; Díaz, M. On blockchain and its integration with IoT. Challenges and opportunities. Futur. Gener. Comput. Syst. 2018, 88, 173–190. [Google Scholar] [CrossRef]
- Selvaraj, S.; Sundaravaradhan, S. Challenges and opportunities in IoT healthcare systems: A systematic review. SN Appl. Sci. 2020, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bader, A.; ElSawy, H.; Gharbieh, M.; Alouini, M.-S.; Adinoyi, A.; Alshaalan, F. First Mile Challenges for Large-Scale IoT. IEEE Commun. Mag. 2017, 55, 138–144. [Google Scholar] [CrossRef]
- Verma, A.; Prakash, S.; Srivastava, V.; Kumar, A.; Mukhopadhyay, S.C. Sensing, Controlling, and IoT Infrastructure in Smart Building: A Review. IEEE Sens. J. 2019, 19, 9036–9046. [Google Scholar] [CrossRef]
- McGuire, D. Security Challenges with the Commercialization of the Internet of Things. Ph.D. Thesis, Cardiff Metropolitan University, Cardiff, Wales, 2017. [Google Scholar]
- Aghapour, S.; Kaveh, M.; Mosavi, M.R.; Martin, D. An Ultra-Lightweight Mutual Authentication Scheme for Smart Grid Two-Way Communications. IEEE Access 2021, 9, 74562–74573. [Google Scholar] [CrossRef]
- Hassan, W.H. Current research on Internet of Things (IoT) security: A survey. Comput. Netw. 2019, 148, 283–294. [Google Scholar] [CrossRef]
- Kaveh, M.; Falahati, A. An improved Merkle hash tree based secure scheme for bionic underwater acoustic communication. Front. Inf. Technol. Electron. Eng. 2021, 22, 1010–1019. [Google Scholar] [CrossRef]
- Xiao, L.; Wan, X.; Lu, X.; Zhang, Y.; Wu, D. IoT Security Techniques Based on Machine Learning: How Do IoT Devices Use AI to Enhance Security? IEEE Signal Process. Mag. 2018, 35, 41–49. [Google Scholar] [CrossRef]
- Najafi, F.; Kaveh, M.; Martín, D.; Reza Mosavi, M. Deep PUF: A Highly Reliable DRAM PUF-Based Authentication for IoT Networks Using Deep Convolutional Neural Networks. Sensors 2021, 21, 2009. [Google Scholar] [CrossRef]
- Kaveh, M.; Martín, D.; Mosavi, M.R. A Lightweight Authentication Scheme for V2G Communications: A PUF-Based Approach Ensuring Cyber/Physical Security and Identity/Location Privacy. Electronics 2020, 9, 1479. [Google Scholar] [CrossRef]
- Aghapour, S.; Kaveh, M.; Martin, D.; Mosavi, M.R. An Ultra-Lightweight and Provably Secure Broadcast Authentication Protocol for Smart Grid Communications. IEEE Access 2020, 8, 125477–125487. [Google Scholar] [CrossRef]
- Kaveh, M.; Aghapour, S.; Martin, D.; Mosavi, M.R. A secure lightweight signcryption scheme for smart grid communications using reliable physically unclonable function. In Proceedings of the 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Madrid, Spain, 9–12 June 2020; pp. 1–6. [Google Scholar]
- Kaveh, M.; Mosavi, M.R. A Lightweight Mutual Authentication for Smart Grid Neighborhood Area Network Communications Based on Physically Unclonable Function. IEEE Syst. J. 2020, 14, 4535–4544. [Google Scholar] [CrossRef]
- Zarpelão, B.B.; Miani, R.S.; Kawakani, C.T.; de Alvarenga, S.C. A survey of intrusion detection in Internet of Things. J. Netw. Comput. Appl. 2017, 84, 25–37. [Google Scholar] [CrossRef]
- Chaabouni, N.; Mosbah, M.; Zemmari, A.; Sauvignac, C.; Faruki, P. Network Intrusion Detection for IoT Security Based on Learning Techniques. IEEE Commun. Surv. Tutor. 2019, 21, 2671–2701. [Google Scholar] [CrossRef]
- Elrawy, M.F.; Awad, A.I.; Hamed, H.F. Intrusion detection systems for IoT-based smart environments: A survey. J. Cloud Comput. 2018, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Suo, H.; Wan, J.; Zou, C.; Liu, J. Security in the internet of things: A review. In Proceedings of the 2012 International Conference on Computer Science and Electronics Engineering, Hangzhou, China, 23–25 March 2012; Volume 3, pp. 648–651. [Google Scholar]
- Ghoumid, K.; Ar-Reyouchi, D.; Rattal, S.; Yahiaoui, R.; Elmazria, O. An Accelerated End-to-End Probing Protocol for Narrowband IoT Medical Devices. IEEE Access 2021, 9, 34131–34141. [Google Scholar] [CrossRef]
- Salim, M.M.; Rathore, S.; Park, J.H. Distributed denial of service attacks and its defenses in IoT: A survey. J. Supercomput. 2020, 76, 5320–5363. [Google Scholar] [CrossRef]
- Vaccari, I.; Aiello, M.; Cambiaso, E. SlowTT: A Slow Denial of Service against IoT Networks. Information 2020, 11, 452. [Google Scholar] [CrossRef]
- Kianfar, N.; Mesgari, M.S.; Mollalo, A.; Kaveh, M. Spatio-temporal modeling of COVID-19 prevalence and mortality using artificial neural network algorithms. Spat. Spatio-Temporal Epidemiol. 2022, 40, 100471. [Google Scholar] [CrossRef]
- Lotfy, A.; Kaveh, M.; Martin, D.; Mosavi, M.R. An Efficient Design of Anderson PUF by Utilization of the Xilinx Primitives in the SLICEM. IEEE Access 2021, 9, 23025–23034. [Google Scholar] [CrossRef]
- Otoum, Y.; Liu, D.; Nayak, A. DL-IDS: A deep learning–based intrusion detection framework for securing IoT. Trans. Emerg. Telecommun. Technol. 2019, 33, e3803. [Google Scholar] [CrossRef]
- Churcher, A.; Ullah, R.; Ahmad, J.; Rehman, S.U.; Masood, F.; Gogate, M.; Alqahtani, F.; Nour, B.; Buchanan, W. An Experimental Analysis of Attack Classification Using Machine Learning in IoT Networks. Sensors 2021, 21, 446. [Google Scholar] [CrossRef] [PubMed]
- Otoum, Y.; Nayak, A. AS-IDS: Anomaly and Signature Based IDS for the Internet of Things. J. Netw. Syst. Manag. 2021, 29, 23. [Google Scholar] [CrossRef]
- Pajouh, H.H.; Javidan, R.; Khayami, R.; Dehghantanha, A.; Choo, K.-K.R. A Two-Layer Dimension Reduction and Two-Tier Classification Model for Anomaly-Based Intrusion Detection in IoT Backbone Networks. IEEE Trans. Emerg. Top. Comput. 2016, 7, 314–323. [Google Scholar] [CrossRef]
- Tavallaee, M.; Stakhanova, N.; Ghorbani, A.A. Toward Credible Evaluation of Anomaly-Based Intrusion-Detection Methods. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2010, 40, 516–524. [Google Scholar] [CrossRef]
- Jose, S.; Malathi, D.; Reddy, B.; Jayaseeli, D. A Survey on anomaly based host intrusion detection system. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2018; Volume 1000, p. 012049. [Google Scholar]
- Ahmad, Z.; Shahid Khan, A.; Wai Shiang, C.; Abdullah, J.; Ahmad, F. Network intrusion detection system: A systematic study of machine learning and deep learning approaches. Trans. Emerg. Telecommun. Technol. 2021, 32, e4150. [Google Scholar] [CrossRef]
- Di Mauro, M.; Galatro, G.; Fortino, G.; Liotta, A. Supervised feature selection techniques in network intrusion detection: A critical review. Eng. Appl. Artif. Intell. 2021, 101, 104216. [Google Scholar] [CrossRef]
- Weller-Fahy, D.J.; Borghetti, B.J.; Sodemann, A.A. A Survey of Distance and Similarity Measures Used Within Network Intrusion Anomaly Detection. IEEE Commun. Surv. Tutorials 2014, 17, 70–91. [Google Scholar] [CrossRef]
- Ariu, D.; Tronci, R.; Giacinto, G. HMMPayl: An intrusion detection system based on Hidden Markov Models. Comput. Secur. 2011, 30, 221–241. [Google Scholar] [CrossRef] [Green Version]
- Koc, L.; Mazzuchi, T.A.; Sarkani, S. A network intrusion detection system based on a Hidden Naïve Bayes multiclass classifier. Expert Syst. Appl. 2012, 39, 13492–13500. [Google Scholar] [CrossRef]
- Lin, W.-C.; Ke, S.-W.; Tsai, C.-F. CANN: An intrusion detection system based on combining cluster centers and nearest neighbors. Knowl.-Based Syst. 2015, 78, 13–21. [Google Scholar] [CrossRef]
- Thottan, M.; Ji, C. Anomaly detection in IP networks. IEEE Trans. Signal Process. 2003, 51, 2191–2204. [Google Scholar] [CrossRef] [Green Version]
- Thaseen, I.S.; Kumar, C.A. Intrusion detection model using fusion of PCA and optimized SVM. In Proceedings of the IEEE International Conference on Contemporary Computing and Informatics (IC3I), Mysuru, India, 27–29 November 2014; pp. 879–884. [Google Scholar]
- Tsai, C.-F.; Hsu, Y.-F.; Lin, C.-Y.; Lin, W.-Y. Intrusion detection by machine learning: A review. Expert Syst. Appl. 2009, 36, 11994–12000. [Google Scholar] [CrossRef]
- Moustafa, N.; Turnbull, B.; Choo, K.-K.R. An Ensemble Intrusion Detection Technique Based on Proposed Statistical Flow Features for Protecting Network Traffic of Internet of Things. IEEE Internet Things J. 2018, 6, 4815–4830. [Google Scholar] [CrossRef]
- Lee, S.; Kim, D.; Park, J. A hybrid approach for real-time network intrusion detection systems. In Proceedings of the International Conference on Computational Intelligence and Security, Harbin, China, 15–19 December 2007; pp. 712–715. [Google Scholar]
- Zhao, R.; Gui, G.; Xue, Z.; Yin, J.; Ohtsuki, T.; Adebisi, B.; Gacanin, H. A Novel Intrusion Detection Method Based on Lightweight Neural Network for Internet of Things. IEEE Internet Things J. 2021, 9, 9960–9972. [Google Scholar] [CrossRef]
- Wang, H.; Gu, J.; Wang, S. An effective intrusion detection framework based on SVM with feature augmentation. Knowl.-Based Syst. 2017, 136, 130–139. [Google Scholar] [CrossRef]
- Yin, C.; Zhu, Y.; Fei, J.; He, X. A Deep Learning Approach for Intrusion Detection Using Recurrent Neural Networks. IEEE Access 2017, 5, 21954–21961. [Google Scholar] [CrossRef]
- He, H.; Sun, X.; He, H.; Zhao, G.; He, L.; Ren, J. A Novel Multimodal-Sequential Approach Based on Multi-View Features for Network Intrusion Detection. IEEE Access 2019, 7, 183207–183221. [Google Scholar] [CrossRef]
- Garg, S.; Kaur, K.; Kumar, N.; Kaddoum, G.; Zomaya, A.Y.; Ranjan, R. A Hybrid Deep Learning-Based Model for Anomaly Detection in Cloud Datacenter Networks. IEEE Trans. Netw. Serv. Manag. 2019, 16, 924–935. [Google Scholar] [CrossRef]
- Xu, X.; Li, J.; Yang, Y.; Shen, F. Toward Effective Intrusion Detection Using Log-Cosh Conditional Variational Autoencoder. IEEE Internet Things J. 2020, 8, 6187–6196. [Google Scholar] [CrossRef]
- Rostami, O.; Kaveh, M. Optimal feature selection for SAR image classification using biogeography-based optimization (BBO), artificial bee colony (ABC) and support vector machine (SVM): A combined approach of optimization and machine learning. Comput. Geosci. 2021, 25, 911–930. [Google Scholar] [CrossRef]
- Khishe, M.; Mosavi, M.R.; Kaveh, M. Improved migration models of biogeography-based optimization for sonar dataset classification by using neural network. Appl. Acoust. 2017, 118, 15–29. [Google Scholar] [CrossRef]
- Kaveh, M.; Khishe, M.; Mosavi, M.R. Design and implementation of a neighborhood search biogeography-based optimization trainer for classifying sonar dataset using multi-layer perceptron neural network. Analog Integr. Circuits Signal Process. 2019, 100, 405–428. [Google Scholar] [CrossRef]
- Kaveh, M.; Kaveh, M.; Mesgari, M.S.; Paland, R.S. Multiple criteria decision-making for hospital location-allocation based on improved genetic algorithm. Appl. Geomat. 2020, 12, 291–306. [Google Scholar] [CrossRef]
- Lotfy, A.; Kaveh, M.; Mosavi, M.R.; Rahmati, A.R. An enhanced fuzzy controller based on improved genetic algorithm for speed control of DC motors. Analog Integr. Circuits Signal Process. 2020, 105, 141–155. [Google Scholar] [CrossRef]
- Kaveh, M.; Mesgari, M.S. Improved biogeography-based optimization using migration process adjustment: An approach for location-allocation of ambulances. Comput. Ind. Eng. 2019, 135, 800–813. [Google Scholar] [CrossRef]
- Moustafa, N.; Slay, J. UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). In Proceedings of the IEEE Military Communications and Information Systems Conference (MilCIS), Canberra, Australia, 10–12 November 2015; pp. 1–6. [Google Scholar]
- Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Turnbull, B. Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-IoT dataset. Future Gener. Comput. Syst. 2019, 100, 779–796. [Google Scholar] [CrossRef] [Green Version]
- Gokalp, O. An iterated greedy algorithm for the obnoxious p-median problem. Eng. Appl. Artif. Intell. 2020, 92, 103674. [Google Scholar] [CrossRef]
- Eligüzel, İ.M.; Özceylan, E. Application of an improved discrete crow search algorithm with local search and elitism on a humanitarian relief case. Artif. Intell. Rev. 2021, 54, 4591–4617. [Google Scholar] [CrossRef]
- Hayyolalam, V.; Kazem, A.A.P. Black Widow Optimization Algorithm: A novel meta-heuristic approach for solving engineering optimization problems. Eng. Appl. Artif. Intell. 2020, 87, 103249. [Google Scholar] [CrossRef]
- Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [Google Scholar] [CrossRef]
Dataset | Category | Training Dataset | Testing Dataset |
---|---|---|---|
UNSW-NB15 | Normal | 56,000 | 37,000 |
Fuzzers | 18,184 | 6062 | |
Analysis | 2000 | 677 | |
Backdoors | 1746 | 583 | |
DoS | 12,264 | 4089 | |
Exploits | 33,393 | 11,132 | |
Generic | 40,000 | 18,871 | |
Recon. | 10,491 | 3496 | |
Shell | 1133 | 378 | |
Worms | 130 | 44 | |
Total | 175,341 | 82,332 | |
Bot-IoT | Normal | 286 | 191 |
DoS | 146,293 | 97,529 | |
DDos | 163,287 | 108,858 | |
Recon. | 54,649 | 36,433 | |
Theft | 47 | 32 | |
Total | 364,562 | 243,043 |
Algorithm | Parameter | Value |
---|---|---|
NSBPSO | The inertial movement rate (α) | 0.08 |
The movement toward the best personal experience rate (Φ1) | 0.56 | |
The movement toward the best global experience rate (Φ2) | 0.84 | |
The movement toward the best onlooker bee from the neighborhood search rate (Φ3) | 0.61 | |
The movement toward the best employed bee from the multi-parent crossover rate (Φ4) | 0.59 | |
Population size | 100 | |
Iteration | 300 | |
I-CSA | Flight length (fl) | 2 |
Awareness probability (AP) | 0.1 | |
Population size | 100 | |
Iteration | 300 | |
IG | T | 0.4 |
d | 4 | |
Number of scout bees (population size) | 100 | |
Iteration | 300 | |
BWO | Procreate rate (PP) | 0.62 |
Mutation rate (PM) | 0.23 | |
Cannibalism rate (CR) | 0.46 | |
Population size | 100 | |
Iteration | 300 | |
ABC | Number of onlooker bees | 90 |
Number of employed bees | 50 | |
Number of scout bees (population size) | 100 | |
Iteration | 300 | |
PSO | The inertial movement rate (α) | 0.11 |
The movement toward the best personal experience rate (Φ1) | 0.61 | |
The movement toward the best global experience rate (Φ2) | 0.91 | |
Population size | 100 | |
Iteration | 300 |
Deep Architectures | Training Dataset | Validation Dataset | ||||
---|---|---|---|---|---|---|
Sensitivity | Specificity | Accuracy | Sensitivity | Specificity | Accuracy | |
NSBPSO-DCNN | 0.9986 | 0.9648 | 0.9941 | 0.9903 | 0.9532 | 0.9886 |
I-CSA-DCNN | 0.9902 | 0.9573 | 0.9852 | 0.9807 | 0.9480 | 0.9769 |
IG-DCNN | 0.9883 | 0.9563 | 0.9809 | 0.9793 | 0.9491 | 0.9736 |
BWO-DCNN | 0.9806 | 0.9541 | 0.9743 | 0.9736 | 0.9406 | 0.9686 |
ABC-DCNN | 0.9752 | 0.9449 | 0.9674 | 0.9635 | 0.9366 | 0.9529 |
PSO-DCNN | 0.9713 | 0.9376 | 0.9650 | 0.9641 | 0.9309 | 0.9517 |
Standard DCNN | 0.9513 | 0.9273 | 0.9421 | 0.9415 | 0.9162 | 0.9362 |
Architectures | Metric | Epoch | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
30 | 60 | 90 | 120 | 150 | 180 | 210 | 240 | 270 | 300 | ||
NSBPSO-DCNN | Accuracy (%) | 91.15 | 91.88 | 92.89 | 94.54 | 95.84 | 97.91 | 98.63 | 98.88 | 99.25 | 99.41 |
Runtime (s) | 74 | 145 | 196 | 275 | 321 | 384 | 462 | 521 | 598 | 681 | |
I-CSA-DCNN | Accuracy (%) | 90.16 | 90.89 | 91.76 | 93.60 | 94.79 | 95.50 | 96.98 | 97.95 | 98.21 | 98.52 |
Runtime (s) | 91 | 169 | 224 | 296 | 351 | 422 | 498 | 543 | 601 | 709 | |
IG-DCNN | Accuracy (%) | 89.19 | 90.47 | 91.85 | 92.19 | 93.59 | 94.90 | 96.48 | 97.43 | 97.89 | 98.09 |
Runtime (s) | 101 | 175 | 246 | 296 | 361 | 429 | 514 | 596 | 632 | 723 | |
BWO-DCNN | Accuracy (%) | 87.72 | 89.63 | 90.18 | 91.85 | 92.06 | 92.89 | 94.73 | 96.48 | 97.09 | 97.43 |
Runtime (s) | 110 | 185 | 239 | 310 | 389 | 435 | 520 | 599 | 649 | 730 | |
ABC-DCNN | Accuracy (%) | 89.18 | 90.19 | 91.08 | 91.73 | 92.76 | 93.09 | 94.19 | 94.81 | 95.12 | 96.74 |
Runtime (s) | 136 | 210 | 269 | 314 | 395 | 452 | 576 | 641 | 709 | 789 | |
PSO-DCNN | Accuracy (%) | 84.19 | 86.81 | 89.72 | 91.29 | 92.18 | 93.18 | 93.98 | 94.10 | 95.29 | 96.50 |
Runtime (s) | 115 | 196 | 267 | 32 | 406 | 459 | 534 | 612 | 693 | 743 | |
DCNN | Accuracy (%) | 78.85 | 83.49 | 86.79 | 89.12 | 90.13 | 90.83 | 91.45 | 92.71 | 93.28 | 94.21 |
Runtime (s) | 159 | 274 | 368 | 406 | 479 | 563 | 631 | 729 | 803 | 876 |
Deep Learning Architectures | Mean Square Error (MSE) | |
---|---|---|
Training Dataset | Validation Dataset | |
NSBPSO-DCNN | 0.00010 | 0.00053 |
I-CSA-DCNN | 0.00109 | 0.03012 |
IG-DCNN | 0.01456 | 0.05106 |
BWO-DCNN | 0.08186 | 0.10456 |
ABC-DCNN | 0.20145 | 0.43296 |
PSO-DCNN | 0.30156 | 0.58325 |
Standard DCNN | 0.51256 | 0.74123 |
Comparison of Algorithm | R+ | R− | p-Value | Level of Significance (α) |
---|---|---|---|---|
NSBPSO-DCNN versus I-CSA-DCNN | 33 | 22 | 0.074 | α = 0.05 |
NSBPSO-DCNN versus IG-DCNN | 35 | 20 | 0.053 | α = 0.05 |
NSBPSO-DCNN versus BWO-DCNN | 38 | 17 | 0.041 | α = 0.05 |
NSBPSO-DCNN versus ABC-DCNN | 43 | 12 | 0.007 | α = 0.01 |
NSBPSO-DCNN versus PSO-DCNN | 45 | 10 | 0.004 | α = 0.01 |
NSBPSO-DCNN versus Standard DCNN | 50 | 5 | 0.002 | α = 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baniasadi, S.; Rostami, O.; Martín, D.; Kaveh, M. A Novel Deep Supervised Learning-Based Approach for Intrusion Detection in IoT Systems. Sensors 2022, 22, 4459. https://doi.org/10.3390/s22124459
Baniasadi S, Rostami O, Martín D, Kaveh M. A Novel Deep Supervised Learning-Based Approach for Intrusion Detection in IoT Systems. Sensors. 2022; 22(12):4459. https://doi.org/10.3390/s22124459
Chicago/Turabian StyleBaniasadi, Sahba, Omid Rostami, Diego Martín, and Mehrdad Kaveh. 2022. "A Novel Deep Supervised Learning-Based Approach for Intrusion Detection in IoT Systems" Sensors 22, no. 12: 4459. https://doi.org/10.3390/s22124459
APA StyleBaniasadi, S., Rostami, O., Martín, D., & Kaveh, M. (2022). A Novel Deep Supervised Learning-Based Approach for Intrusion Detection in IoT Systems. Sensors, 22(12), 4459. https://doi.org/10.3390/s22124459