Duty-Cycle Electronically Tunable Triangular/Square Wave Generator Using LT1228 Commercially Available ICs for Capacitive Sensor Interfacing
Abstract
:1. Introduction
2. Idea of Synthesize of Duty Cycle Adjustable Triangular/Square Wave Generator
3. Off-the-Shelf IC (LT1228)
4. Concept of the Duty Cycle Tunable Triangular/Square Wave Generator
4.1. Concept of Schmitt Trigger
4.2. Concept of Triangular/Square Wave Generator
4.3. Non-Ideal Case of LT1228 on Saturation-Mode
5. Experimental Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pal, D.; Srinivasulu, A.; Pal, B.B.; Demosthenous, A.; Das, B.N. Current Conveyor-Based Square/Triangular Waveform Generators With Improved Linearity. IEEE Trans. Instrum. Meas. 2009, 58, 2174–2180. [Google Scholar] [CrossRef]
- Torteanchai, U.; Manman, S.; Kumngern, M.; Lerkvaranyu, S. Square/Triangular Wave Generator Using Single Bulk-Driven FDCCII. In Proceedings of the 2019 16th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Pattaya, Thailand, 10–13 July 2019; pp. 709–712. [Google Scholar]
- Sotner, R.; Jerabek, J.; Kledrowetz, V. Special type of current conveyor-based Schmitt trigger in novel design of triangular waveform generator. AEU-Int. J. Electron. Commun. 2019, 112, 152931. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, S.; Nakayama, M.; Watanabe, K. Limitations of a relaxation oscillator in capacitance measurements. IEEE Trans. Instrum. Meas. 2000, 49, 980–983. [Google Scholar] [CrossRef]
- Marcellis, A.D.; Ferri, G.; Mantenuto, P. A CCII-based non-inverting Schmitt trigger and its application as astable multivibrator for capacitive sensor interfacing. Int. J. Circuit Theory Appl. 2017, 45, 1060–1076. [Google Scholar] [CrossRef]
- Minaei, S.; Yuce, E. A Simple Schmitt Trigger Circuit with Grounded Passive Elements and Its Application to Square/Triangular Wave Generator. Circuits Syst. Signal Process. 2012, 31, 877–888. [Google Scholar] [CrossRef]
- Tudosa, I.; Picariello, F.; Balestrieri, E.; De Vito, L.; Lamonaca, F. Hardware Security in IoT era: The Role of Measurements and Instrumentation. In Proceedings of the 2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0&IoT), Naples, Italy, 4–6 June 2019; pp. 285–290. [Google Scholar]
- Gasulla, M.; Li, X.; Meijer, G.C.M. The noise performance of a high-speed capacitive-sensor interface based on a relaxation oscillator and a fast counter. IEEE Trans. Instrum. Meas. 2005, 54, 1934–1940. [Google Scholar] [CrossRef] [Green Version]
- Alzaher, H.A. Novel Schmitt Trigger and Square-Wave Generator Using Single Current Amplifier. IEEE Access 2019, 7, 186175–186181. [Google Scholar] [CrossRef]
- Panda, A.; Singh, A.K.; Tirupathi, R.; Kar, S.K. A Low-Power Tunable Square-Wave Generator for Instrumentation Applications. IEEE Trans. Instrum. Meas. 2020, 69, 5051–5057. [Google Scholar] [CrossRef]
- Kar, S.K.; Sen, S. Tunable Square-Wave Generator for Integrated Sensor Applications. IEEE Trans. Instrum. Meas. 2011, 60, 3369–3375. [Google Scholar] [CrossRef] [Green Version]
- Siripruchyanun, M.; Payakkakul, K.; Pipatthitikorn, P.; Satthaphol, P. A Current-mode Square/Triangular Ware Generator Based on Multiple-output VDTAs. Procedia Comput. Sci. 2016, 86, 152–155. [Google Scholar] [CrossRef] [Green Version]
- Chaturvedi, B.; Kumar, A. A novel linear square/triangular wave generator with tunable duty cycle. AEU-Int. J. Electron. Commun. 2018, 84, 206–209. [Google Scholar] [CrossRef]
- Chien, H.-C. A current-/voltage-controlled four-slope operation square-/triangular-wave generator and a dual-mode pulse width modulation signal generator employing current-feedback operational amplifiers. Microelectron. J. 2014, 45, 634–647. [Google Scholar] [CrossRef]
- Tran, H.D.; Wang, H.Y.; Lin, M.C.; Nguyen, Q.M. Synthesis of Cascadable DDCC-Based Universal Filter Using NAM. Appl. Sci. 2015, 5, 320–343. [Google Scholar] [CrossRef]
- Chen, H.P.; Hwang, Y.S.; Ku, Y.T. Voltage-mode and current-mode resistorless third-order quadrature oscillator. Appl. Sci. 2017, 7, 179. [Google Scholar] [CrossRef]
- Chen, H.P.; Yang, W.S. Electronically Tunable Current Controlled Current Conveyor Transconductance Amplifier-Based Mixed-Mode Biquadratic Filter with Resistorless and Grounded Capacitors. Appl. Sci. 2017, 7, 244. [Google Scholar] [CrossRef] [Green Version]
- Herencsar, N.; Koton, J.; Hanak, P. Universal Voltage Conveyor and its Novel Dual-Output Fully-Cascadable VM APF Application. Appl. Sci. 2017, 7, 307. [Google Scholar] [CrossRef]
- Sotner, R.; Jerabek, J.; Prokop, R.; Kledrowetz, V.; Polak, J. A CMOS Multiplied Input Differential Difference Amplifier: A New Active Device and Its Applications. Appl. Sci. 2017, 7, 106. [Google Scholar] [CrossRef] [Green Version]
- Faseehuddin, M.; Herencsar, N.; Albrni, M.A.; Sampe, J. Electronically Tunable Mixed-Mode Universal Filter Employing a Single Active Block and a Minimum Number of Passive Components. Appl. Sci. 2021, 11, 55. [Google Scholar] [CrossRef]
- Vatavu, M.; Nastasescu, V.; Turcu, F.; Burda, I. Voltage-controlled synthetic inductors for resonant piezoelectric shunt damping: A comparative analysis. Appl. Sci. 2019, 9, 4777. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.F.; Chen, H.P.; Ku, Y.; Chen, P.Y. A CFOA-based voltage-mode multifunction biquadratic filter and a quadrature oscillator using the CFOA-based biquadratic filter. Appl. Sci. 2019, 9, 2304. [Google Scholar] [CrossRef] [Green Version]
- Sotner, R.; Domansky, O.; Jerabek, J.; Herencsar, N.; Petrzela, J.; Andriukaitis, D. Integer-and fractional-order integral and derivative two-port summations: Practical design considerations. Appl. Sci. 2020, 10, 54. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.-F.; Chen, H.-P.; Ku, Y.; Li, Y.-F. High-Input Impedance Voltage-Mode Multifunction Filter. Appl. Sci. 2021, 11, 387. [Google Scholar] [CrossRef]
- Sotner, R.; Jerabek, J.; Langhammer, L.; Polak, J.; Herencsar, N.; Prokop, R.; Petrzela, J.; Jaikla, W. Comparison of Two Solutions of Quadrature Oscillators With Linear Control of Frequency of Oscillation Employing Modern Commercially Available Devices. Circ. Syst. Signal Processing 2015, 34, 3449–3469. [Google Scholar] [CrossRef]
- Maheshwari, S.; Ansari, M.S. Catalog of Realizations for DXCCII using Commercially Available ICs and Applications. Radioengineering 2012, 21, 281–289. [Google Scholar]
- Kubanek, D.; Koton, J.; Dvorak, J.; Herencsar, N.; Sotner, R. Optimized Design of OTA-Based Gyrator Realizing Fractional-Order Inductance Simulator: A Comprehensive Analysis. Appl. Sci. 2021, 11, 291. [Google Scholar] [CrossRef]
- Tangsrirat, W. Practical Floating Capacitance Multiplier Implementation with Commercially Available IC LT1228s. Inf. MIDEM 2021, 51, 85–94. [Google Scholar]
- Jaikla, W.; Adhan, S.; Suwanjan, P.; Kumngern, M. Current/voltage controlled quadrature sinusoidal oscillators for phase sensitive detection using commercially available IC. Sensors 2020, 20, 1319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wai, M.P.P.; Chaichana, A.; Jaikla, W.; Siripongdee, S.; Suwanjan, P. One input voltage and three output voltage universal biquad filters with orthogonal tune of frequency and bandwidth. Int. J. Electr. Comput. Eng. 2021, 11, 2962–2973. [Google Scholar]
- Wang, S.-F.; Chen, H.-P.; Ku, Y.; Lee, C.-L. Versatile Voltage-Mode Biquadratic Filter and Quadrature Oscillator Using Four OTAs and Two Grounded Capacitors. Electron 2020, 9, 1493. [Google Scholar] [CrossRef]
- Linear Technology, LT1228: 100MHz Current Feedback Amplifier with DC Gain Control. Available online: https://www.analog.com/media/en/technical-documentation/data-sheets/1228fd.pdf (accessed on 11 May 2022).
- Abramowitz, I.A.M. Stegun. In Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables; National Bureau of Standards: Gaithersburg, MD, USA, 1970; p. 85. [Google Scholar]
- Honeywell, HCH-1000 Series: Capacitive Humidity Sensors. Available online: https://media.digikey.com/pdf/Data%20Sheets/Honeywell%20Sensing%20&%20Control%20PDFs/HCH-1000%20Series.pdf (accessed on 16 June 2022).
- Jaikla, W.; Buakhong, U.; Siripongdee, S.; Khateb, F.; Sotner, R.; Silapan, P.; Suwanjan, P.; Chaichana, A. Single Commercially Available IC-Based Electronically Controllable Voltage-Mode First-Order Multifunction Filter with Complete Standard Functions and Low Output Impedance. Sensors 2021, 21, 7376. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silapan, P.; Choykhuntod, P.; Kaewon, R.; Jaikla, W. Duty-Cycle Electronically Tunable Triangular/Square Wave Generator Using LT1228 Commercially Available ICs for Capacitive Sensor Interfacing. Sensors 2022, 22, 4922. https://doi.org/10.3390/s22134922
Silapan P, Choykhuntod P, Kaewon R, Jaikla W. Duty-Cycle Electronically Tunable Triangular/Square Wave Generator Using LT1228 Commercially Available ICs for Capacitive Sensor Interfacing. Sensors. 2022; 22(13):4922. https://doi.org/10.3390/s22134922
Chicago/Turabian StyleSilapan, Phamorn, Pawich Choykhuntod, Rapeepan Kaewon, and Winai Jaikla. 2022. "Duty-Cycle Electronically Tunable Triangular/Square Wave Generator Using LT1228 Commercially Available ICs for Capacitive Sensor Interfacing" Sensors 22, no. 13: 4922. https://doi.org/10.3390/s22134922
APA StyleSilapan, P., Choykhuntod, P., Kaewon, R., & Jaikla, W. (2022). Duty-Cycle Electronically Tunable Triangular/Square Wave Generator Using LT1228 Commercially Available ICs for Capacitive Sensor Interfacing. Sensors, 22(13), 4922. https://doi.org/10.3390/s22134922