Dysprosium Doped Zinc Oxide for NO2 Gas Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Synthesis
2.2. Material Characterization Techniques
2.3. Gas Sensing Tests
3. Results
3.1. Morphological and Compositional Characterization
3.2. Structural Characterization
3.3. Optical Characterization
3.4. Electrical Characterization
3.5. Gas Sensing Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO). Ambient Air Pollution: Health Impacts; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Kumar, R.; Al-Dossary, O.; Kumar, G.; Umar, A. Zinc oxide nanostructures for no2 gas–sensor applications: A review. Nano-Micro Lett. 2015, 7, 97–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kailasa Ganapathi, S.; Kaur, M.; Shaheera, M.; Pathak, A.; Gadkari, S.C.; Debnath, A.K. Highly sensitive NO2 sensor based on ZnO nanostructured thin film prepared by SILAR technique. Sens. Actuators B Chem. 2021, 335, 129678. [Google Scholar] [CrossRef]
- Wang, H.; Dai, M.; Li, Y.; Bai, J.; Liu, Y.; Li, Y.; Wang, C.; Liu, F.; Lu, G. The influence of different ZnO nanostructures on NO2 sensing performance. Sens. Actuators B Chem. 2021, 329, 129145. [Google Scholar] [CrossRef]
- Frausto-Vicencio, I.; Moreno, A.; Goldsmith, H.; Hsu, Y.-K.; Hopkins, F. Characterizing the Performance of a Compact BTEX GC-PID for Near-Real Time Analysis and Field Deployment. Sensors 2021, 21, 2095. [Google Scholar] [CrossRef]
- Zuidema, C.; Schumacher, C.S.; Austin, E.; Carvlin, G.; Larson, T.V.; Spalt, E.W.; Zusman, M.; Gassett, A.J.; Seto, E.; Kaufman, J.D.; et al. Deployment, Calibration, and Cross-Validation of Low-Cost Electrochemical Sensors for Carbon Monoxide, Nitrogen Oxides, and Ozone for an Epidemiological Study. Sensors 2021, 21, 4214. [Google Scholar] [CrossRef]
- Pathak, T.K.; Kumar, V.; Swart, H.C.; Purohit, L.P. P-type conductivity in doped and codoped ZnO thin films synthesized by RF magnetron sputtering. J. Mod. Opt. 2015, 62, 1368–1373. [Google Scholar] [CrossRef]
- Shang, H.; Cao, G. Nanostructured ZnO gas sensors. In Environmental Applications of Nanomaterials Synth Sorbents Sensors, 2nd ed.; Imperial College Press: London, UK, 2012; Volume 41, pp. 435–471. [Google Scholar] [CrossRef]
- Han, T.H.; Bak, S.Y.; Kim, S.; Lee, S.H.; Han, Y.J.; Yi, M. Decoration of cuo nws gas sensor with zno nps for improving NO2 sensing characteristics. Sensors 2021, 21, 2103. [Google Scholar] [CrossRef]
- Chou, S.M.; Teoh, L.G.; Lai, W.H.; Su, Y.H.; Hon, M.H. ZnO:Al thin film gas sensor for detection of ethanol vapor. Sensors 2006, 6, 1420–1427. [Google Scholar] [CrossRef] [Green Version]
- Que, M.; Lin, C.; Sun, J.; Chen, L.; Sun, X.; Sun, Y. Progress in ZnO nanosensors. Sensors 2021, 21, 5502. [Google Scholar] [CrossRef]
- Soltabayev, B.; Mentbayeva, A.; Acar, S. Enhanced gas sensing properties of in doped ZnO thin films. Mater. Today Proc. 2021, 49, 2495–2500. [Google Scholar] [CrossRef]
- Choudhary, K.; Saini, R.; Upadhyay, G.K.; Rana, V.S.; Purohit, L.P. Wrinkle type nanostructured Y-doped ZnO thin films for oxygen gas sensing at lower operating temperature. Mater. Res. Bull. 2021, 141, 111342. [Google Scholar] [CrossRef]
- Khojier, K. Preparation and investigation of Al-doped ZnO thin films as a formaldehyde sensor with extremely low detection limit and considering the effect of RH. Mater. Sci. Semicond. Process. 2021, 121, 105283. [Google Scholar] [CrossRef]
- Tomić, M.; Claros, M.; Gràcia, I.; Figueras, E.; Cané, C.; Vallejos, S. Zno structures with surface nanoscale interfaces formed by Au, Fe2O3, or Cu2O modifier nanoparticles: Characterization and gas sensing properties. Sensors 2021, 21, 4509. [Google Scholar] [CrossRef] [PubMed]
- Hastir, A.; Kohli, N.; Singh, R.C. Comparative study on gas sensing properties of rare earth (Tb, Dy and Er) doped ZnO sensor. J. Phys. Chem. Solids 2017, 105, 23–34. [Google Scholar] [CrossRef]
- El Fidha, G.; Bitri, N.; Chaabouni, F.; Acosta, S.; Güell, F.; Bittencourt, C.; Casanova-Chafer, J.; Llobet, E. Physical and photocatalytic properties of sprayed Dy doped ZnO thin films under sunlight irradiation for degrading methylene blue. RSC Adv. 2021, 11, 24917–24925. [Google Scholar] [CrossRef]
- Doni Pon, V.; Joseph Wilson, K.S.; Hariprasad, K.; Ganesh, V.; Elhosiny Ali, H.; Algarni, H.; Yahia, I.S. Enhancement of optoelectronic properties of ZnO thin films by Al doping for photodetector applications. Superlattices Microstruct. 2021, 151, 2020. [Google Scholar] [CrossRef]
- Singh, M.; Rajoriya, M.; Sahni, M.; Gupta, P. Effect of Aluminum doping on potential barrier of gold-ZnO-Si Schottky barrier diode. Mater. Today Proc. 2019, 34, 588–592. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, R.; Pandey, P.C. Enhanced ultraviolet photo-response in Dy doped ZnO thin film. J. Appl. Phys. 2018, 123, 054502. [Google Scholar] [CrossRef]
- Hastir, A.; Kohli, N.; Singh, R.C. Temperature dependent selective and sensitive terbium doped ZnO nanostructures. Sens. Actuators B Chem. 2016, 231, 110–119. [Google Scholar] [CrossRef]
- Naderi Nasrabadi, M.; Mortazavi, Y.; Khodadadi, A.A. Highly sensitive and selective Gd2O3-doped SnO2 ethanol sensors synthesized by a high temperature and pressure solvothermal method in a microreactor. Sens. Actuators B Chem. 2016, 230, 130–139. [Google Scholar] [CrossRef]
- Bose, K.; Kesavan, R.; Deepa, S. Effect of dysprosium doping on the structural and gas sensing properties of SnO2 thin films. AIP Conf. Proc. 2020, 2263, 040001. [Google Scholar] [CrossRef]
- Singh, G.; Kaur, M.; Arora, B.; Singh, R.C. Investigation of ethanol gas sensing properties of Dy-doped SnO2 nanostructures. J Mater. Sci. Mater. Electron. 2018, 29, 867–875. [Google Scholar] [CrossRef]
- Anand, K.; Kaur, J.; Singh, R.C.; Thangaraj, R. Temperature dependent selectivity towards ethanol and acetone of Dy3+-doped In2O3 nanoparticles. Chem Phys Lett. 2017, 670, 37–45. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, V.; Sarwa, A.; Kumar, A.; Surbhi; Goyal, R.; Sachdev, K.; Annapoorni, S.; Asokan, K.; Kanjilal, D. Understanding the origin of ferromagnetism in Er-doped ZnO system. RSC Adv. 2016, 6, 89242–89249. [Google Scholar] [CrossRef]
- Illyaskutty, N.; Sreedhar, S.; Kohler, H.; Philip, R.; Rajan, V.; Pillai, V.P. ZnO-Modified MoO3 Nano-Rods, -Wires, -Belts and -Tubes: Photophysical and Nonlinear Optical Properties. J. Phys. Chem. C 2013, 117, 7818–7829. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, Z.; Wu, Z.; Chen, J.; Yan, P.; Wang, J. Structural and optical properties of Dy doped ZnO film grown by RF magnetic sputter. Adv. Mater. Res. 2010, 97-101, 11–14. [Google Scholar]
- Minin, I.V.; Minin, O.V. Elements of Diffraction Quasi-Optics, 2nd ed.; Addison-Wesley Series in Metallurgy and Materials; Addison-Wesley: Boston, MA, USA, 1977. [Google Scholar]
- Lu, J.G.; Fujita, S.; Kawaharamura, T.; Nishinaka, H.; Kamada, Y.; Ohshima, T.; Ye, Z.Z.; Zeng, Y.J.; Zhang, Y.Z.; Zhu, L.P.; et al. Carrier concentration dependence of band gap shift in n -type ZnO:Al films. J. Appl. Phys. 2007, 101, 083705. [Google Scholar] [CrossRef]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi 1966, 15, 627–637. [Google Scholar] [CrossRef]
- Moss, T.S. The interpretation of the properties of indium antimonide. Proc. Phys. Soc. Sect. B 1954, 67, 775–782. [Google Scholar] [CrossRef]
- Ramgir, N.S.; Ganapathi, S.K.; Kaur, M.; Datta, N.; Muthe, K.P.; Aswal, D.K.; Gupta, S.K.; Yakhmi, J.V. Chemical Sub-ppm H2S sensing at room temperature using CuO thin films. Sens. Actuators B Chem. 2010, 151, 90–96. [Google Scholar] [CrossRef]
- Deva Arun Kumar, K.; Valanarasu, S.; Ponraj, J.S.; Fernandes, B.J.; Shkir, M.; AlFaify, S.; Murahari, P.; Ramesh, K. Effect of Er doping on the ammonia sensing properties of ZnO thin films prepared by a nebulizer spray technique. J. Phys. Chem. Solids 2020, 144, 109513. [Google Scholar] [CrossRef]
- Salah, M.; Zayani, W.; Bouricha, B.; Azizi, S.; Alatrache, A.; Amlouk, M.; Lamloumi, J. Vibrational study of Li-doped ZnO sprayed thin films along with sensors under ethanol vapor and photocatalytic applications. J. Mater. Sci. Mater. Electron. 2020, 31, 18883–18902. [Google Scholar] [CrossRef]
- Barathi, P.; Krishna Mohan, M.; Shalini, V.; Harish, S.; Navaneethan, M.; Archana, J.; Kumar, M.G.; Dhivya, P.; Ponnusamy, S.; Shimomura, M.; et al. Growth and influence of Gd doping on ZnO nanostructures for enhanced optical, structural properties and gas sensing applications. Appl. Surf. Sci. 2020, 499, 143857. [Google Scholar] [CrossRef]
- Roy, B.; Chakrabarty, S.; Mondal, O.; Pal, M.; Dutta, A. Effect of neodymium doping on structure, electrical and optical properties of nanocrystalline ZnO. Mater. Charact. 2012, 70, 1–7. [Google Scholar] [CrossRef]
- Kılınç, N.; Öztürka, S.; Arda, L.; Altındal, A.; Öztürk, Z. Structural, electrical transport and NO2 sensing properties of Y-doped ZnO thin films. J. Alloys Compd. 2012, 536, 138–144. [Google Scholar] [CrossRef]
- Jonscher, A.K. The universal dielectric response. In Proceedings of the Annual Conference on Electrical Insulation and Dielectric Phenomena, Pocono Manor, PA, USA, 28–31 October 1990; pp. 23–40. [Google Scholar] [CrossRef]
- Mariappan, C.R.; Govindaraj, G.; Rathan, S.V.; Prakash, G.V. Vitrification of K3M2P3O12 (M = B, Al, Bi) NASICON-type materials and electrical relaxation studies. Mater. Sci. Eng. B 2005, 123, 63–68. [Google Scholar] [CrossRef]
- Patil, V.L.; Vanalakar, S.A.; Tarwal, N.L.; Patil, A.P.; Dongale, T.D.; Kim, J.H.; Patil, P.S. Construction of Cu doped ZnO nanorods by chemical method for Low temperature detection of NO2 gas. Sens. Actuators A Phys. 2019, 299, 111611. [Google Scholar] [CrossRef]
- Ganesh, R.S.; Durgadevi, E.; Navaneethan, M.; Patil, V.L.; Ponnusamy, S.; Muthamizhchelvan, C.; Kawasaki, S.; Patil, P.S.; Hayakawa, Y. Tuning the selectivity of NH3 gas sensing response using Cu-doped ZnO nanostructures. Sens. Actuators A Phys. 2018, 269, 331–341. [Google Scholar] [CrossRef]
- Sinha, M.; Mahapatra, R.; Mondal, M.K.; Krishnamurthy, S.; Ghosh, R. Fast response and low temperature sensing of acetone and ethanol using Al-doped ZnO microrods. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 118, 113868. [Google Scholar] [CrossRef]
- Dev, S.; Kumar, P.; Rani, A.; Agarwal, A.; Dhar, R. Development of indium doped ZnO thin films for highly sensitive acetylene (C2H2) gas sensing. Superlattices Microstruct. 2020, 145, 106638. [Google Scholar] [CrossRef]
- Wei, A.; Pan, L.; Huang, W. Recent progress in the ZnO nanostructure-based sensors. Mater. Sci. Eng. B 2011, 176, 1409–1421. [Google Scholar] [CrossRef]
- Bhatia, S.; Verma, N.; Kumar, R. Morphologically-dependent photocatalytic and gas sensing application of Dy-doped ZnO nanoparticles. J. Alloys Compd. 2017, 726, 1274–1285. [Google Scholar] [CrossRef]
- Qin, Z.; Liu, Y.; Chen, W.; Ai, P.; Wu, Y.; Li, S.; Yu, D. Highly sensitive alcohol sensor based on a single Er-doped In2O3 nanoribbon. Chem. Phys. Lett. 2016, 646, 12–17. [Google Scholar] [CrossRef]
- Xuan, J.; Zhao, G.; Sun, M.; Jia, F.; Wang, X.; Zhou, T.; Yin, G.; Liu, B. Low-temperature operating ZnO-based NO2 sensors: A review. RSC Adv. 2020, 10, 39786–39807. [Google Scholar] [CrossRef]
- Algün, G. Humidity sensing properties of fluorine doped zinc oxide thin films. J. Mater. Sci. Mater. Electron. 2018, 29, 17039–17046. [Google Scholar] [CrossRef]
- An, W.; Wu, X.; Zeng, X.C. Adsorption of O2, H2, CO, NH3, and NO2 on ZnO Nanotube: A Density Functional Theory Study. J. Phys. Chem. C 2008, 112, 5747–5755. [Google Scholar] [CrossRef]
- Spencer, M.; Yarovsky, I. ZnO Nanostructures for Gas Sensing: Interaction of NO2, NO, O, and N with the ZnO(10) Surface. Phys. Chem. C. 2010, 114, 10881–10893. [Google Scholar] [CrossRef]
- Santhosama, A.; Ravichandran, K.; Ahamad, T. Donated free electrons induced enhancement in the NH3 sensing ability of ZnO thin films—Effect of terbium loading. Sens. Actuator A Phys. 2020, 316, 112376. [Google Scholar] [CrossRef]
Weight Percentage (%) | |||
---|---|---|---|
Sample | Zn | O | Dy |
ZnO | 61.35 | 38.65 | 0 |
Dy@ZnO | 59.11 | 35.28 | 5.61 |
Sample | Pure ZnO | Dy@ZnO |
---|---|---|
2θ (degree) | 34.5 | 33.8 |
0.27 | 0.34 | |
D (nm) | 30.8 | 24.1 |
Sample | Ea (ωm) (eV) | Ea (DC) (eV) |
ZnO | 1.15 | 1.25 |
Dy@ZnO | 0.34 | 0.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Fidha, G.; Bitri, N.; Mahjoubi, S.; Chaabouni, F.; Llobet, E.; Casanova-Chafer, J. Dysprosium Doped Zinc Oxide for NO2 Gas Sensing. Sensors 2022, 22, 5173. https://doi.org/10.3390/s22145173
El Fidha G, Bitri N, Mahjoubi S, Chaabouni F, Llobet E, Casanova-Chafer J. Dysprosium Doped Zinc Oxide for NO2 Gas Sensing. Sensors. 2022; 22(14):5173. https://doi.org/10.3390/s22145173
Chicago/Turabian StyleEl Fidha, Ghada, Nabila Bitri, Sarra Mahjoubi, Fatma Chaabouni, Eduard Llobet, and Juan Casanova-Chafer. 2022. "Dysprosium Doped Zinc Oxide for NO2 Gas Sensing" Sensors 22, no. 14: 5173. https://doi.org/10.3390/s22145173
APA StyleEl Fidha, G., Bitri, N., Mahjoubi, S., Chaabouni, F., Llobet, E., & Casanova-Chafer, J. (2022). Dysprosium Doped Zinc Oxide for NO2 Gas Sensing. Sensors, 22(14), 5173. https://doi.org/10.3390/s22145173