Improved Adaptive Multi-Objective Particle Swarm Optimization of Sensor Layout for Shape Sensing with Inverse Finite Element Method
Abstract
:1. Introduction
2. Review of Beam Deformation Reconstruction through iFEM
2.1. Inverse Finite Element Method
2.2. Indexes to Evaluate the Effect of Deformation Reconstruction
3. Optimization Algorithm
3.1. Multi-Objective Particle Swarm Optimization Algorithm
- How to guide particles to converge:
- 2.
- How to balance the exploration and exploitation of algorithm:
- 3.
- How to search the target space fully:
- 4.
- How to improve exploration efficiency in a high-dimensional space:
3.2. Improved Adaptive Multi-Objective Particle Swarm Optimization Algorithm
3.2.1. Initialization Strategy
3.2.2. Adaptive Inertia Weight Strategy
3.2.3. Guided Particle Selection Strategy
3.2.4. External Candidate Solution Set Maintenance Strategy
3.2.5. Algorithm Framework
Algorithm 1: Framework of IAMOPSO |
Input: Initialized population size , initialized number of iterations , number of particles N, maximum number of iterations T, maximum capacity of ECS set , adaptive inertia weight parameters , , , and , and number of initial partitions D = 3 Termination condition: The maximum number of iterations is reached. Step 1: Initialize 1. Use the initialization strategy to generate the initial population. 2. Select the non-dominated solutions in the initial population and store them in the ECS set. Step 2: Iteration 1. The inertia weight is adaptive. 2. Estimate the evolutionary state. At the beginning of the iteration, the population is in the exploitation state. 3. Partition the target space. Calculate the population density in each partition. 4. Select according to the evolution state. 5. Calculate and perform particle transfer. 6. Update ECS set to ensure that all non-dominated solutions explored are stored in the ECS set. 7. If the number of external candidate solutions exceeds the limit, maintain ECS set and remove redundant particles. 8. Determine whether the termination condition is reached, if it is satisfied, output the ECS set, otherwise enter the next iteration. Output: ECS set |
3.3. Technical Route
4. Algorithm Evaluation
4.1. Numerical Examples
4.2. Numerical and Experimental Validation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roshan, J.; Mei, H.F.; Asaad, M.; Victor, G. Crack-Length Estimation for Structural Health Monitoring Using the High-Frequency Resonances Excited by the Energy Release during Fatigue-Crack Growth. Sensors 2021, 21, 4221. [Google Scholar]
- Das, S.; Saha, P. Performance of swarm intelligence based chaotic meta-heuristic algorithms in civil structural health monitoring. Measurement 2021, 169, 108533. [Google Scholar] [CrossRef]
- Gerardo, A.; Javier, B.; Josu, E.; Miguel, G.J.; Carolina, R. Methodology for Detecting Progressive Damage in Structures Using Ultrasound-Guided Waves. Sensors 2022, 22, 1692. [Google Scholar]
- Guo, J.; Zhang, L.L.; Jiang, H. Research on Real-time Signal Stability of Computer Monitoring Bridge Structure Health Sensor. Sci. J. Intell. Syst. Res. 2022, 4, 256–261. [Google Scholar]
- Huang, H.B.; Yi, T.H.; Li, H.N. Anomaly Identification of Structural Health Monitoring Data Using Dynamic Independent Component Analysis. J. Comput. Civ. Eng. 2020, 34, 04020025. [Google Scholar] [CrossRef]
- Azimi, M.; Pekcan, G. Structural health monitoring using extremely compressed data through deep learning. Comput. Aided Civ. Infrastruct. Eng. 2020, 35, 597–614. [Google Scholar] [CrossRef]
- Guo, C.; Zou, J.P.; Sun, K. Analysis on Structural Health Monitoring System of High-Pile Wharf Based on Optical Fiber Sensor. J. Phys. Conf. Ser. 2021, 1881, 042018. [Google Scholar] [CrossRef]
- Gherlone, M.; Cerracchio, P.; Mattone, M. Shape sensing methods: Review and experimental comparison on a wing-shaped plate. Prog. Aerosp. Sci. 2018, 99, 14–26. [Google Scholar]
- Tessler, A.; Spangler, J.L. A Variational Principle for Reconstruction of Elastic Deformations in Shear Deformable Plates and Shells; NASA/TM-2003-212445; National Aeronautics and Space Administration, Langley Research Center: Hampton, VA, USA, 2003.
- Tessler, A.; Spangler, J.L. A least-squares variational method for full-field reconstruction of elastic deformations in shear-deformable plates and shells. Comput. Methods Appl. Mech. Eng. 2005, 194, 327–339. [Google Scholar] [CrossRef]
- Gherlone, M.; Cerracchio, P.; Mattone, M.; Sciuva, M.D.; Tessler, A. Shape sensing of 3D frame structures using an inverse Finite Element Method. Int. J. Solids Struct. 2012, 49, 3100–3112. [Google Scholar] [CrossRef] [Green Version]
- Gherlone, M.; Cerracchio, P.; Mattone, M.; Di Sciuva, M.; Tessler, A. An inverse finite element method for beam shape sensing: Theoretical framework and experimental validation. Smart Mater. Struct. 2014, 23, 045027. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Bao, H.; Duan, X.C.; Fang, H.M. The Application Research of Inverse Finite Element Method for Frame Deformation Estimation. Int. J. Aerosp. Eng. 2017, 2017, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Niu, S.T.; Zhao, Y.; Bao, H. Shape sensing of plate structures through coupling inverse finite element method and scaled boundary element analysis. Measurement 2022, 190, 110676. [Google Scholar] [CrossRef]
- Chen, K.Y.; He, D.H.; Zhao, Y.; Bao, H.; Du, J.L. A Unified Full-Field Deformation Measurement Method for Beam-Like Structure. IEEE Trans. Instrum. Meas. 2022, 71, 1–10. [Google Scholar] [CrossRef]
- Yuen, K.V.; Kuok, S.C. Efficient Bayesian sensor placement algorithm for structural identification: A general approach for multi-type sensory systems. Earthq. Eng. Struct. Dyn. 2015, 44, 757–774. [Google Scholar] [CrossRef]
- Zhao, Y.; Du, J.L.; Bao, H.; Xu, Q.; Christopher, J.D. Optimal Sensor Placement for Inverse Finite Element Reconstruction of Three-Dimensional Frame Deformation. Int. J. Aerosp. Eng. 2018, 2018, 6121293. [Google Scholar] [CrossRef]
- Zhao, F.F.; Bao, H. Multi-Objective Particle Swarm Optimization of Sensor Distribution Scheme with Consideration of the Accuracy and the Robustness for Deformation Reconstruction. Sensors 2019, 19, 1306. [Google Scholar] [CrossRef] [Green Version]
- Cheshmehgaz, H.R.; Haron, H.; Sharifi, A. The review of multiple evolutionary searches and multi-objective evolutionary algorithms. Artif. Intell. Rev. 2015, 43, 311–343. [Google Scholar] [CrossRef]
- Chen, Y.K.; Huang, S.; Davis, L.; Du, H.; Shi, Q.; He, J.; Wang, Q.; Hu, W. Optimization of Geometric Parameters of Longitudinal-Connected Air Suspension Based on a Double-Loop Multi-Objective Particle Swarm Optimization Algorithm. Appl. Sci. 2018, 8, 1454. [Google Scholar] [CrossRef] [Green Version]
- Akbarzadeh, P.; Mikaeeli, S.Z.; Rahimiyan, M. Multiobjective optimization of thermohydrodynamic journal bearing using MOPSO algorithm. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2018, 232, 657–671. [Google Scholar] [CrossRef]
- Sreekara Reddy, M.B.S.; Ratnam, C.; Rajyalakshmi, G.; Manupati, V.K. An effective hybrid multi objective evolutionary algorithm for solving real time event in flexible job shop scheduling problem. Measurement 2018, 114, 78–90. [Google Scholar] [CrossRef]
- Liu, J.F.; Liu, J. Applying multi-objective ant colony optimization algorithm for solving the unequal area facility layout problems. Appl. Soft Comput. J. 2018, 74, 167–189. [Google Scholar] [CrossRef]
- Lin, C.H.; Hwang, C.C. High Performances Design of a Six-Phase Synchronous Reluctance Motor Using Multi-Objective Optimization with Altered Bee Colony Optimization and Taguchi Method. Energies 2018, 11, 2716. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.Z.; Lu, P.; Li, Y.Z.; Wang, C.; Yuan, L.; Mo, L. Short-term hydro-thermal-wind complementary scheduling considering uncertainty of wind power using an enhanced multi-objective bee colony optimization algorithm. Energy Convers. Manag. 2016, 123, 116–129. [Google Scholar] [CrossRef]
- Han, F.; Chen, W.T.; Ling, Q.H.; Han, H. Multi-objective particle swarm optimization with adaptive strategies for feature selection. Swarm Evol. Comput. 2021, 62, 100847. [Google Scholar] [CrossRef]
- Mandal, P.; Mondal, S.C. Multi-objective optimization of Cu-MWCNT composite electrode in electro discharge machining using MOPSO-TOPSIS. Measurement 2021, 169, 108347. [Google Scholar] [CrossRef]
- Peng, S.; Xiong, Y. An Area Coverage and Energy Consumption Optimization Approach Based on Improved Adaptive Particle Swarm Optimization for Directional Sensor Networks. Sensors 2019, 19, 1192. [Google Scholar] [CrossRef] [Green Version]
- Luu, K.; Noble, M.; Gesret, A.; Belayouni, N.; Roux, P.F. A parallel competitive Particle Swarm Optimization for non-linear first arrival traveltime tomography and uncertainty quantification. Comput. Geosci. 2018, 113, 81–93. [Google Scholar] [CrossRef]
- Lee, J.; Park, J.; Kim, H.C.; Kim, D.W. Competitive Particle Swarm Optimization for Multi-Category Text Feature Selection. Entropy 2019, 21, 602. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.B.; Song, L.; Sun, G.J. A Competitive Particle Swarm Algorithm Based on Vector Angles for Multi-Objective Optimization. IEEE Access 2021, 9, 89741–89756. [Google Scholar] [CrossRef]
- Yu, X.; Wang, H.; Sun, H. Decomposition-based multi-objective comprehensive learning particle swarm optimisation. Int. J. Comput. Sci. Eng. 2019, 18, 349–360. [Google Scholar] [CrossRef]
- Zhu, Q.L.; Lin, Q.Z.; Chen, W.N.; Wong, K.C.; Coello, C.C.A.; Li, J.Q.; Chen, J.Y.; Zhang, J. An External Archive-Guided Multiobjective Particle Swarm Optimization Algorithm. IEEE Trans. Cybern. 2017, 47, 2794–2808. [Google Scholar] [CrossRef]
- Li, L.; Wang, W.L.; Li, W.K.; Xu, X.L.; Zhao, Y.W. A Novel Ranking-based Optimal Guides Selection Strategy in MOPSO. Procedia Comput. Sci. 2016, 91, 1001–1010. [Google Scholar] [CrossRef] [Green Version]
- Gordis, J.H.; Jae-Cheol, S.; Bouwense, M.D. Minimum condition number by orthogonal projection row selection of artificial boundary conditions for finite element model update and damage detection. J. Sound Vib. 2018, 433, 179–197. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the Icnn95-International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Engelbrecht, A.P. Particle swarm optimization with crossover: A review and empirical analysis. Artif. Intell. Rev. 2016, 45, 131–165. [Google Scholar] [CrossRef] [Green Version]
Load | Heavy Load (N) | Moderate Load (N) |
---|---|---|
250 | 120 | |
200 | 100 |
C1 | C2 | C3 | |
---|---|---|---|
(190.00, −10.32, −10.00) | (40.00, −10.32, −10.00) | (217.00, −10.32, 10.00) | |
(257.00, 13.00, 0.00) | (168.00, −12.69, 3.47) | (343.00, −11.79, 6.84) | |
(182.00, −3.47, 12.69) | (318.00, 3.47, −12.69) | (212.00, −8.33, 10.86) | |
(408.00, −8.33, −10.86) | (288.00, 0.00, 13.00) | (328.00, −10.32, 10.00) | |
(123.00, 11.79, −6.84) | (38.00, −12.69, 3.47) | (252.00, −12.69, −3.47) | |
(348.00, −3.47, 12.69) | (248.00, 10.86, 8.33) | (248.00, 6.84, −11.79) |
Load (N) | Direction | Max_Disp | C1 | C2 | C3 |
---|---|---|---|---|---|
Heavy Load | X | 0 | |||
Y | 39.2 | 0.07 | 0.10 | 0.19 | |
Z | 31.5 | 0.05 | 0.06 | 0.08 | |
Middle Load | X | 0 | |||
Y | 18.9 | 0.06 | 0.08 | 0.11 | |
Z | 16.3 | 0.06 | 0.07 | 0.09 |
Optimizer | Scheme | Robustness Index | ||
---|---|---|---|---|
IAMOPSO | C1 | 0.026 | −4.41 | 0.069 |
C2 | 0.028 | −4.62 | 0.051 | |
MOPSO | C3 | 0.034 | −4.61 | 0.113 |
P1 | P2 | P3 | P4 | |
---|---|---|---|---|
(485.00, 6.84, −18.79) | (955.00, −6.84, −18.79) | (840.00, 19.69, −3.47) | (890.00, 15.32, 12.85) | |
(640.00, 6.84, −18.79) | (415.00, −0.00, −20.00) | (550.00, 17.32, 10.00) | (695.00, 10.00, −17.32) | |
(785.00, 3.47, −19.69) | (880.00, −10.00, −17.32) | (380.00, 3.47, −19.69) | (475.00, 3.47, 19.69) | |
(745.00, 10.00, 17.32) | (565.00, 18.79, −6.84) | (545.00, 18.79, 6.84) | (620.00, 17.32, 10.00) | |
(625.00, 19.69, 3.47) | (645.00, 6.84, −18.79) | (1080.00, 19.69, 3.47) | (965.00, 15.32,1 2.85) | |
(1660.00, −20.00, 0.00) | (495.00, −10.00, −17.32) | (835.00, −17.32, 10.00) | (750.00, 10.00, −17.32) |
Index | 200 N | 350 N |
---|---|---|
−100.29 mm | −144.09 mm | |
−103.09 mm | −148.21 mm | |
−104.26 mm | −149.03 mm | |
0.037 | 0.039 | |
0.042 | 0.047 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Niu, S.; Bao, H.; Hu, N. Improved Adaptive Multi-Objective Particle Swarm Optimization of Sensor Layout for Shape Sensing with Inverse Finite Element Method. Sensors 2022, 22, 5203. https://doi.org/10.3390/s22145203
Li X, Niu S, Bao H, Hu N. Improved Adaptive Multi-Objective Particle Swarm Optimization of Sensor Layout for Shape Sensing with Inverse Finite Element Method. Sensors. 2022; 22(14):5203. https://doi.org/10.3390/s22145203
Chicago/Turabian StyleLi, Xiaohan, Shengtao Niu, Hong Bao, and Naigang Hu. 2022. "Improved Adaptive Multi-Objective Particle Swarm Optimization of Sensor Layout for Shape Sensing with Inverse Finite Element Method" Sensors 22, no. 14: 5203. https://doi.org/10.3390/s22145203
APA StyleLi, X., Niu, S., Bao, H., & Hu, N. (2022). Improved Adaptive Multi-Objective Particle Swarm Optimization of Sensor Layout for Shape Sensing with Inverse Finite Element Method. Sensors, 22(14), 5203. https://doi.org/10.3390/s22145203