Effective Connectivity in Spinal Cord Injury-Induced Neuropathic Pain
Abstract
:1. Introduction
2. Materials and Method
2.1. Participants
2.2. EEG Data
2.3. Source Time-Series
2.4. Source Connectivity
2.5. Statistics
3. Results
3.1. Participant Details
3.2. Results of Statistical Analysis
3.3. Differences between ABP and SCI
3.4. Differences between SCI Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Appendix A
Group | No | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | M (SD) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PdP | Weeks with pain (post-recording) | 6 | 10 | 4 | 4 | 8 | 7 | 2 | 4 | - | - | 6 (3) |
Location | Feet | At and below level | Hands | Left leg | At and below level | At and below level | At and below level | Hands | - | - | - | |
Pain VNS | 4 | 2 | 6 | 1 | 4 | 4 | 6 | 2 | - | - | 4 (2) | |
PwP | Weeks Before pain | 20 | 12 | 15 | 6 | 12 | 26 | 6 | 28 | 6 | 6 | 14 (8) |
Location | At and below level | At and below level | Hands and Buttock | At and below level | Legs and feet | At level and feet | Right hand | Right leg | Hands | At and below level | - | |
Pain VNS | 9 | 6 | 5 | 5 | 7 | 5 | 6 | 8 | 7 | 7 | 6 (1) | |
Meds | PG | GP | TR | PG | - | - | - | PG | GP | GP | - |
S no. | Connection | ABP M [95% CI] | PnP M [95% CI] | PdP M [95% CI] | PwP M [95% CI] | Main p-Value | FDR Adjusted |
---|---|---|---|---|---|---|---|
1 | RSSC to RPMC | 0.05 [0.04 0.06] | 0.09 [0.08 0.11] | 0.14 [0.12 0.18] | 0.08 [0.07 0.10] | 0.0002 | 0.0072 |
2 | RSSC to RSMA | 0.05 [0.04 0.06] | 0.07 [0.06 0.09] | 0.14 [0.11 0.18] | 0.08 [0.07 0.10] | 0.0027 | 0.0348 |
3 | RSSC to CMA | 0.04 [0.03 0.05] | 0.07 [0.06 0.09] | 0.14 [0.12 0.19] | 0.08 [0.07 0.10] | 2.61 × 10−6 | 0.0003 |
4 | RSSC to RPFC | 0.04 [0.04 0.06] | 0.09 [0.07 0.11] | 0.14 [0.11 0.18] | 0.09 [0.08 0.12] | 0.0007 | 0.0129 |
5 | RSSC to LPFC | 0.06 [0.05 0.07] | 0.07 [0.06 0.09] | 0.14 [0.11 0.17] | 0.08 [0.07 0.10] | 0.0015 | 0.0227 |
6 | RSSC to I | 0.05 [0.04 0.07] | 0.10 [0.08 0.13] | 0.12 [0.10 0.15] | 0.09 [0.07 0.11] | 0.001 | 0.0171 |
7 | RSSC to ACC | 0.05 [0.04 0.06] | 0.09 [0.08 0.11] | 0.14 [0.12 0.19] | 0.09 [0.08 0.12] | 0.0004 | 0.0109 |
8 | RSSC to LPMC | 0.04 [0.03 0.05] | 0.09 [0.08 0.11] | 0.12 [0.10 0.16] | 0.08 [0.07 0.10] | 1.15 × 10−5 | 0.001 |
9 | RSSC to LSMA | 0.05 [0.04 0.06] | 0.07 [0.06 0.09] | 0.13 [0.11 0.17] | 0.08 [0.07 0.10] | 0.0028 | 0.0351 |
10 | RSSC to LM1 | 0.04 [0.03 0.05] | 0.09 [0.08 0.11] | 0.13 [0.11 0.16] | 0.09 [0.08 0.11] | 4.24 × 10−5 | 0.0019 |
11 | RSSC to LSAC | 0.04 [0.04 0.06] | 0.10 [0.08 0.12] | 0.14 [0.12 0.19] | 0.09 [0.07 0.12] | 0.0013 | 0.0213 |
12 | RSSC to LSSC | 0.05 [0.04 0.06] | 0.09 [0.07 0.11] | 0.14 [0.12 0.18] | 0.08 [0.07 0.10] | 0.0002 | 0.0061 |
13 | RSSC to LS1 | 0.04 [0.04 0.06] | 0.09 [0.08 0.12] | 0.14 [0.11 0.19] | 0.08 [0.07 0.11] | 0.0021 | 0.021 |
14 | RS1 to LSSC | 0.12 [0.10 0.15] | 0.21 [0.18 0.26] | 0.29 [0.24 0.37] | 0.20 [0.17 0.25] | 0.0037 | 0.0425 |
15 | RM1 to CMA | 0.11 [0.09 0.13] | 0.21 [0.18 0.26] | 0.20 [0.17 0.24] | 0.20 [0.17 0.23] | 0.0006 | 0.0129 |
16 | RSMA to LSSC | 0.64 [0.57 0.72] | 0.45 [0.41 0.51] | 0.40 [0.35 0.45] | 0.53 [0.48 0.60] | 0.0006 | 0.0129 |
17 | LSMA to RPMC | 0.43 [0.39 0.48] | 0.33 [0.30 0.37] | 0.27 [0.25 0.31] | 0.41 [0.37 0.45] | 0.0003 | 0.0079 |
18 | LSMA to RSMA | 0.45 [0.41 0.50] | 0.34 [0.31 0.38] | 0.27 [0.25 0.31] | 0.42 [0.38 0.46] | 0.0023 | 0.031 |
19 | LSMA to CMA | 0.46 [0.42 0.51] | 0.36 [0.33 0.40] | 0.25 [0.22 0.28] | 0.40 [0.36 0.44] | 1.75 × 10−5 | 0.0012 |
20 | LSMA to LPMC | 0.47 [0.43 0.52] | 0.33 [0.30 0.37] | 0.32 [0.29 0.36] | 0.43 [0.39 0.47] | 0.001 | 0.0171 |
21 | LSMA to LSAC | 0.49 [0.45 0.55] | 0.34 [0.31 0.37] | 0.28 [0.25 0.31] | 0.40 [0.37 0.44] | 6.52 × 10−5 | 0.0025 |
22 | LSMA to LSSC | 0.48 [0.44 0.53] | 0.34 [0.31 0.38] | 0.27 [0.24 0.30] | 0.42 [0.38 0.46] | 3.68 × 10−8 | 1.00 × 10−5 |
23 | LSMA to LS1 | 0.48 [0.44 0.54] | 0.35 [0.32 0.39] | 0.29 [0.26 0.32] | 0.43 [0.39 0.48] | 2.21 × 10−5 | 0.0012 |
24 | LS1 to LSSC | 0.16 [0.13 0.19] | 0.19 [0.16 0.22] | 0.29 [0.25 0.36] | 0.20 [0.17 0.24] | 0.0035 | 0.0421 |
References
- Siddall, P.; Loeser, J. Pain following spinal cord injury. Spinal Cord 2001, 39, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Ngernyam, N.; Jensen, M.P.; Arayawichanon, P.; Auvichayapat, N.; Tiamkao, S.; Janjarasjitt, S.; Punjaruk, W.; Amatachaya, A.; Aree-Uea, B.; Auvichayapat, P. The effects of transcranial direct current stimulation in patients with neuropathic pain from spinal cord injury. Clin. Neurophysiol. 2015, 126, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Vučković, A.; Altaleb, M.K.H.; Fraser, M.; McGeady, C.; Purcell, M. EEG Correlates of Self-Managed Neurofeedback Treatment of Central Neuropathic Pain in Chronic Spinal Cord Injury. Front. Neurosci. 2019, 13, 762. [Google Scholar] [CrossRef] [PubMed]
- Merante, A.; Zhang, Y.; Kumar, S.; Nam, C.S. Brain–Computer Interfaces for Spinal Cord Injury Rehabilitation. In Neuroergonomics: Principles and Practice; Springer: Cham, Switzerland, 2020; pp. 315–328. ISBN 978-3-030-34784-0. [Google Scholar]
- Tran, Y.; Boord, P.; Middleton, J.; Craig, A. Levels of brain wave activity (8–13 Hz) in persons with spinal cord injury. Spinal Cord 2004, 42, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Herbert, D.; Tran, Y.; Craig, A.; Boord, P.; Middleton, J.; Siddall, P. Altered Brain Wave Activity In Persons With Chronic Spinal Cord Injury. Int. J. Neurosci. 2007, 117, 1731–1746. [Google Scholar] [CrossRef]
- Boord, P.; Siddall, P.J.; Tran, Y.; Herbert, D.; Middleton, J.; Craig, A. Electroencephalographic slowing and reduced reactivity in neuropathic pain following spinal cord injury. Spinal Cord 2007, 46, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Wydenkeller, S.; Maurizio, S.; Dietz, V.; Halder, P. Neuropathic pain in spinal cord injury: Significance of clinical and electrophysiological measures. Eur. J. Neurosci. 2009, 30, 91–99. [Google Scholar] [CrossRef]
- Vuckovic, A.; Hasan, M.A.; Fraser, M.; Conway, B.A.; Nasseroleslami, B.; Allan, D.B. Dynamic Oscillatory Signatures of Central Neuropathic Pain in Spinal Cord Injury. J. Pain 2014, 15, 645–655. [Google Scholar] [CrossRef]
- Jurkiewicz, M.T.; Mikulis, D.J.; McIlroy, W.E.; Fehlings, M.G.; Verrier, M.C. Sensorimotor Cortical Plasticity During Recovery Following Spinal Cord Injury: A Longitudinal fMRI Study. Neurorehabilit. Neural Repair 2007, 21, 527–538. [Google Scholar] [CrossRef]
- Bruehlmeier, M.; Dietz, V.; Leenders, K.L.; Roelcke, U.; Missimer, J.; Curt, A. How does the human brain deal with a spinal cord injury? Eur. J. Neurosci. 1998, 10, 3918–3922. [Google Scholar] [CrossRef]
- Mikulis, D.J.; Jurkiewicz, M.T.; McIlroy, W.E.; Staines, W.R.; Rickards, L.; Kalsi-Ryan, S.; Crawley, A.P.; Fehlings, M.G.; Verrier, M.C. Adaptation in the motor cortex following cervical spinal cord injury. Neurology 2002, 58, 794–801. [Google Scholar] [CrossRef] [PubMed]
- Gustin, S.M.; Wrigley, P.J.; Henderson, L.A.; Siddall, P.J. Brain circuitry underlying pain in response to imagined movement in people with spinal cord injury. Pain 2010, 148, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Kokotilo, K.J.; Eng, J.J.; Curt, A. Reorganization and Preservation of Motor Control of the Brain in Spinal Cord Injury: A Systematic Review. J. Neurotrauma 2009, 26, 2113–2126. [Google Scholar] [CrossRef] [PubMed]
- Gustin, S.M.; Wrigley, P.J.; Gandevia, S.C.; Middleton, J.W.; Henderson, L.A.; Siddall, P.J. Movement imagery increases pain in people with neuropathic pain following complete thoracic spinal cord injury. Pain 2008, 137, 237–244. [Google Scholar] [CrossRef]
- Black, S.R.; King, J.B.; Mahan, M.A.; Anderson, J.; Butson, C.R. Functional Hyperconnectivity and Task-Based Activity Changes Associated With Neuropathic Pain After Spinal Cord Injury: A Pilot Study. Front. Neurol. 2021, 12, 891. [Google Scholar] [CrossRef] [PubMed]
- Athanasiou, A.; Klados, M.; Pandria, N.; Foroglou, N.; Kavazidi, K.R.; Polyzoidis, K.; Bamidis, P.D. A Systematic Review of Investigations into Functional Brain Connectivity Following Spinal Cord Injury. Front. Hum. Neurosci. 2017, 11, 517. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J. Functional and Effective Connectivity: A Review. Brain Connect. 2011, 1, 13–36. [Google Scholar] [CrossRef]
- Hou, J.-M.; Sun, T.-S.; Xiang, Z.-M.; Zhang, J.-Z.; Zhang, Z.-C.; Zhao, M.; Zhong, J.-F.; Liu, J.; Zhang, H.; Liu, H.-L.; et al. Alterations of resting-state regional and network-level neural function after acute spinal cord injury. Neuroscience 2014, 277, 446–454. [Google Scholar] [CrossRef]
- Hou, J.; Xiang, Z.; Yan, R.; Zhao, M.; Wu, Y.; Zhong, J.; Guo, L.; Li, H.; Wang, J.; Wu, J.; et al. Motor recovery at 6 months after admission is related to structural and functional reorganization of the spine and brain in patients with spinal cord injury. Hum. Brain Mapp. 2016, 37, 2195–2209. [Google Scholar] [CrossRef]
- Min, Y.-S.; Park, J.W.; Jin, S.U.; Jang, K.E.; Nam, H.U.; Lee, Y.-S.; Jung, T.-D.; Chang, Y. Alteration of Resting-State Brain Sensorimotor Connectivity following Spinal Cord Injury: A Resting-State Functional Magnetic Resonance Imaging Study. J. Neurotrauma 2015, 32, 1422–1427. [Google Scholar] [CrossRef]
- Oni-Orisan, A.; Kaushal, M.; Li, W.; Leschke, J.; Ward, B.D.; Vedantam, A.; Kalinosky, B.; Budde, M.D.; Schmit, B.D.; Li, S.-J.; et al. Alterations in Cortical Sensorimotor Connectivity following Complete Cervical Spinal Cord Injury: A Prospective Resting-State fMRI Study. PLoS ONE 2016, 11, e0150351. [Google Scholar] [CrossRef] [PubMed]
- Astolfi, L.; Cincotti, F.; Mattia, D.; Fallani, F.D.V.; Vecchiato, G.; Salinari, S.; Witte, H.; Babiloni, F. Time-Varying Cortical Connectivity Estimation from Noninvasive, High-Resolution EEG Recordings. Psychophysiology 2010, 24, 83–90. [Google Scholar] [CrossRef]
- Astolfi, L.; Bakardjian, H.; Cincotti, F.; Mattia, D.; Marciani, M.G.; Fallani, F.D.V.; Colosimo, A.; Salinari, S.; Miwakeichi, F.; Yamaguchi, Y.; et al. Estimate of Causality Between Independent Cortical Spatial Patterns During Movement Volition in Spinal Cord Injured Patients. Brain Topogr. 2007, 19, 107–123. [Google Scholar] [CrossRef] [PubMed]
- Fallani, F.D.V.; Astolfi, L.; Cincotti, F.; Mattia, D.; Tocci, A.; Marciani, M.G.; Colosimo, A.; Salinari, S.; Gao, S.; Cichocki, A.; et al. Extracting Information from Cortical Connectivity Patterns Estimated from High Resolution EEG Recordings: A Theoretical Graph Approach. Brain Topogr. 2007, 19, 125–136. [Google Scholar] [CrossRef]
- Mattia, D.; Cincotti, F.; Astolfi, L.; Fallani, F.D.V.; Scivoletto, G.; Marciani, M.G.; Babiloni, F. Motor cortical responsiveness to attempted movements in tetraplegia: Evidence from neuroelectrical imaging. Clin. Neurophysiol. 2009, 120, 181–189. [Google Scholar] [CrossRef]
- Athanasiou, A.; Terzopoulos, N.; Pandria, N.; Xygonakis, I.; Foroglou, N.; Polyzoidis, K.; Bamidis, P.D. Functional Brain Connectivity during Multiple Motor Imagery Tasks in Spinal Cord Injury. Neural Plast. 2018, 2018, 1–20. [Google Scholar] [CrossRef]
- Huynh, V.; Rosner, J.; Curt, A.; Kollias, S.; Hubli, M.; Michels, L. Disentangling the Effects of Spinal Cord Injury and Related Neuropathic Pain on Supraspinal Neuroplasticity: A Systematic Review on Neuroimaging. Front. Neurol. 2020, 10, 1413. [Google Scholar] [CrossRef]
- Field-Fote, E. Spinal Cord Injury Rehabilitation; F.A. Davis: Philadelphia, PA, USA, 2009; ISBN 9780803617179. [Google Scholar]
- Finnerup, N.B.; Baastrup, C. Spinal Cord Injury Pain: Mechanisms and Management. Curr. Pain Headache Rep. 2012, 16, 207–216. [Google Scholar] [CrossRef]
- Siddall, P.J.; Middleton, J.W. Spinal cord injury-induced pain: Mechanisms and treatments. Pain Manag. 2015, 5, 493–507. [Google Scholar] [CrossRef]
- Finnerup, N.B.; Norrbrink, C.; Trok, K.; Piehl, F.; Johannesen, I.L.; Sørensen, J.C.; Jensen, T.S.; Werhagen, L. Phenotypes and Predictors of Pain Following Traumatic Spinal Cord Injury: A Prospective Study. J. Pain 2014, 15, 40–48. [Google Scholar] [CrossRef]
- Mehta, S.; Guy, S.D.; Bryce, T.N.; Craven, B.; Finnerup, N.; Hitzig, S.L.; Orenczuk, S.; Siddall, P.J.; Widerstrom-Noga, E.; Casalino, A.; et al. The CanPain SCI Clinical Practice Guidelines for Rehabilitation Management of Neuropathic Pain after Spinal Cord: Screening and diagnosis recommendations. Spinal Cord 2016, 54, S7–S13. [Google Scholar] [CrossRef] [PubMed]
- Vuckovic, A.; Jarjees, M.; Purcell, M.; Berry, H.; Fraser, M. Electroencephalographic Predictors of Neuropathic Pain in Subacute Spinal Cord Injury. J. Pain 2018, 19, 1256.e1–1256.e17. [Google Scholar] [CrossRef]
- Nuwer, M.R. 10-10 electrode system for EEG recording. Clin. Neurophysiol. 2018, 129, 1103. [Google Scholar] [CrossRef] [PubMed]
- Delorme, A.; Makeig, S. EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent Component Analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Makeig, S.; Bell, A.J.; Jung, T.-P.; Sejnowski, T.J. Independent Component Analysis of Electroencephalographic Data. Adv. Neural Inf. Process. Syst. 1996, 145–151. Available online: http://papers.nips.cc/paper/1091-independent-component-analysis-of-electroencephalographic-data (accessed on 17 May 2022).
- Oostenveld, R.; Fries, P.; Maris, E.; Schoffelen, J.-M. FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Comput. Intell. Neurosci. 2010, 2011, 156869. [Google Scholar] [CrossRef]
- Vorwerk, J.; Oostenveld, R.; Piastra, M.C.; Magyari, L.; Wolters, C.H. The FieldTrip-SimBio pipeline for EEG forward solutions. Biomed. Eng. Online 2018, 17, 1–17. [Google Scholar] [CrossRef]
- Holmes, C.J.; Hoge, R.; Collins, L.; Woods, R.; Toga, A.W.; Evans, A.C. Enhancement of MR Images Using Registration for Signal Averaging. J. Comput. Assist. Tomogr. 1998, 22, 324–333. [Google Scholar] [CrossRef]
- Piastra, M.C.; Nüßing, A.; Vorwerk, J.; Clerc, M.; Engwer, C.; Wolters, C.H. A comprehensive study on electroencephalography and magnetoencephalography sensitivity to cortical and subcortical sources. Hum. Brain Mapp. 2020, 42, 978–992. [Google Scholar] [CrossRef]
- Pascual-Marqui, R.D.; Lehmann, D.; Koukkou, M.; Kochi, K.; Anderer, P.; Saletu, B.; Tanaka, H.; Hirata, K.; John, E.R.; Prichep, L.; et al. Assessing interactions in the brain with exact low-resolution electromagnetic tomography. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2011, 369, 3768–3784. [Google Scholar] [CrossRef]
- Jatoi, M.A.; Kamel, N. Brain Source Localization Using EEG Signal Analysis, 1st ed.; CRC Press: Boca Raton, FL, USA, 2017; ISBN 9781315156415. [Google Scholar]
- Jensen, M.P. A Neuropsychological Model of Pain: Research and Clinical Implications. J. Pain 2010, 11, 2–12. [Google Scholar] [CrossRef]
- Blinowska, K.J. Review of the methods of determination of directed connectivity from multichannel data. Med. Biol. Eng. Comput. 2011, 49, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Kaminski, M.J.; Blinowska, K.J. A new method of the description of the information flow in the brain structures. Biol. Cybern. 1991, 65, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Barr, D. Learning Statistical Models through Simulation in R: An Interactive Textbook. Available online: https://psyteachr.github.io/stat-models-v1 (accessed on 17 May 2022).
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Ng, V.K.; Cribbie, R.A. Using the Gamma Generalized Linear Model for Modeling Continuous, Skewed and Heteroscedastic Outcomes in Psychology. Curr. Psychol. 2016, 36, 225–235. [Google Scholar] [CrossRef]
- Hardwick, R.M.; Caspers, S.; Eickhoff, S.B.; Swinnen, S.P. Neural correlates of action: Comparing meta-analyses of imagery, observation, and execution. Neurosci. Biobehav. Rev. 2018, 94, 31–44. [Google Scholar] [CrossRef]
- Athanasiou, A.; Lithari, C.; Kalogianni, K.; Klados, M.; Bamidis, P. Source Detection and Functional Connectivity of the Sensorimotor Cortex during Actual and Imaginary Limb Movement: A Preliminary Study on the Implementation of eConnectome in Motor Imagery Protocols. Adv. Hum.-Comput. Interact. 2012, 2012, 127627. [Google Scholar] [CrossRef]
- Dechent, P.; Merboldt, K.-D.; Frahm, J. Is the human primary motor cortex involved in motor imagery? Cogn. Brain Res. 2004, 19, 138–144. [Google Scholar] [CrossRef]
- Sharp, K.G.; Gramer, R.; Page, S.J.; Cramer, S.C. Increased Brain Sensorimotor Network Activation after Incomplete Spinal Cord Injury. J. Neurotrauma 2017, 34, 623–631. [Google Scholar] [CrossRef]
- Koski, L.; Paus, T. Functional connectivity of the anterior cingulate cortex within the human frontal lobe: A brain-mapping meta-analysis. Exp. Brain Res. 2000, 133, 55–65. [Google Scholar] [CrossRef]
- Picard, N.; Strick, P.L. Imaging the premotor areas. Curr. Opin. Neurobiol. 2001, 11, 663–672. [Google Scholar] [CrossRef]
- Hétu, S.; Grégoire, M.; Saimpont, A.; Coll, M.-P.; Eugène, F.; Michon, P.-E.; Jackson, P.L. The neural network of motor imagery: An ALE meta-analysis. Neurosci. Biobehav. Rev. 2013, 37, 930–949. [Google Scholar] [CrossRef] [PubMed]
- Green, J.; Sora, E.; Bialy, Y.; Ricamato, A.; Thatcher, R. Cortical motor reorganization after paraplegia: An EEG Study. Neurology 1999, 53, 736–743. [Google Scholar] [CrossRef] [PubMed]
- Cramer, S.C.; Lastra, L.; LaCourse, M.G.; Cohen, M.J. Brain motor system function after chronic, complete spinal cord injury. Brain 2005, 128, 2941–2950. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.A.; Lee, J.S.; Schandler, S.L.; Cohen, M.J. An fMRI Investigation of Hand Representation in Paraplegic Humans. Neurorehabilit. Neural Repair 2003, 17, 37–47. [Google Scholar] [CrossRef]
- Van der Lubbe, R.H.; Sobierajewicz, J.; Jongsma, M.L.; Verwey, W.B.; Przekoracka-Krawczyk, A. Frontal brain areas are more involved during motor imagery than during motor execution/preparation of a response sequence. Int. J. Psychophysiol. 2021, 164, 71–86. [Google Scholar] [CrossRef]
- Kotegawa, K.; Yasumura, A.; Teramoto, W. Changes in prefrontal cortical activation during motor imagery of precision gait with age and task difficulty. Behav. Brain Res. 2020, 399, 113046. [Google Scholar] [CrossRef]
- Rainville, P.; Duncan, G.H.; Price, D.D.; Carrier, B.; Bushnell, M.C. Pain Affect Encoded in Human Anterior Cingulate But Not Somatosensory Cortex. Science 1997, 277, 968–971. [Google Scholar] [CrossRef]
- Hasan, M.A.; Fraser, M.; Conway, B.A.; Allan, D.B.; Vučković, A. Reversed cortical over-activity during movement imagination following neurofeedback treatment for central neuropathic pain. Clin. Neurophysiol. 2016, 127, 3118–3127. [Google Scholar] [CrossRef]
- Jutzeler, C.R.; Freund, P.; Huber, E.; Curt, A.; Kramer, J.L. Neuropathic Pain and Functional Reorganization in the Primary Sensorimotor Cortex After Spinal Cord Injury. J. Pain 2015, 16, 1256–1267. [Google Scholar] [CrossRef]
- Wrigley, P.J.; Press, S.R.; Gustin, S.M.; Macefield, V.G.; Gandevia, S.C.; Cousins, M.J.; Middleton, J.W.; Henderson, L.A.; Siddall, P.J. Neuropathic pain and primary somatosensory cortex reorganization following spinal cord injury. Pain 2009, 141, 52–59. [Google Scholar] [CrossRef]
- Mercier, C.; Roosink, M.; Bouffard, J.; Bouyer, L. Promoting Gait Recovery and Limiting Neuropathic Pain After Spinal Cord Injury. Neurorehabilit. Neural Repair 2016, 31, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Al-Wasity, S.; Vogt, S.; Vuckovic, A.; Pollick, F.E. Upregulation of Supplementary Motor Area Activation with fMRI Neurofeedback during Motor Imagery. eNeuro 2020, 8, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Marins, T.F.; Rodrigues, E.C.; Engel, A.; Hoefle, S.; Basílio, R.; Lent, R.; Moll, J.; Tovar-Moll, F. Enhancing Motor Network Activity Using Real-Time Functional MRI Neurofeedback of Left Premotor Cortex. Front. Behav. Neurosci. 2015, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Blefari, M.L.; Sulzer, J.; Hepp-Reymond, M.-C.; Kollias, S.; Gassert, R. Improvement in precision grip force control with self-modulation of primary motor cortex during motor imagery. Front. Behav. Neurosci. 2015, 9, 18. [Google Scholar] [CrossRef] [PubMed]
- Mottaz, A.; Corbet, T.; Doganci, N.; Magnin, C.; Nicolo, P.; Schnider, A.; Guggisberg, A.G. Modulating functional connectivity after stroke with neurofeedback: Effect on motor deficits in a controlled cross-over study. NeuroImage Clin. 2018, 20, 336–346. [Google Scholar] [CrossRef]
- Beekhuizen, K.S.; Field-Fote, E. Massed Practice versus Massed Practice with Stimulation: Effects on Upper Extremity Function and Cortical Plasticity in Individuals with Incomplete Cervical Spinal Cord Injury. Neurorehabilit. Neural Repair 2005, 19, 33–45. [Google Scholar] [CrossRef]
- Beekhuizen, K.S.; Field-Fote, E.C. Sensory Stimulation Augments the Effects of Massed Practice Training in Persons With Tetraplegia. Arch. Phys. Med. Rehabil. 2008, 89, 602–608. [Google Scholar] [CrossRef]
- Hoffman, L.R.; Field-Fote, E.C. Cortical Reorganization Following Bimanual Training and Somatosensory Stimulation in Cervical Spinal Cord Injury: A Case Report. Phys. Ther. 2007, 87, 208–223. [Google Scholar] [CrossRef]
- Heitger, M.H.; Goble, D.J.; Dhollander, T.; Dupont, P.; Caeyenberghs, K.; Leemans, A.; Sunaert, S.; Swinnen, S.P. Bimanual Motor Coordination in Older Adults Is Associated with Increased Functional Brain Connectivity—A Graph-Theoretical Analysis. PLoS ONE 2013, 8, e62133. [Google Scholar] [CrossRef]
- Boudrias, M.-H.; Gonçalves, C.S.; Penny, W.D.; Park, C.H.; Rossiter, H.E.; Talelli, P.; Ward, N.S. Age-related changes in causal interactions between cortical motor regions during hand grip. NeuroImage 2012, 59, 3398–3405. [Google Scholar] [CrossRef]
- Stewart, J.; Tran, X.; Cramer, S.C. Age-related variability in performance of a motor action selection task is related to differences in brain function and structure among older adults. NeuroImage 2013, 86, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Rowe, J.B.; Siebner, H.; Filipovic, S.R.; Cordivari, C.; Gerschlager, W.; Rothwell, J.; Frackowiak, R. Aging is associated with contrasting changes in local and distant cortical connectivity in the human motor system. NeuroImage 2006, 32, 747–760. [Google Scholar] [CrossRef] [PubMed]
- Michely, J.; Volz, L.; Hoffstaedter, F.; Tittgemeyer, M.; Eickhoff, S.; Fink, G.; Grefkes, C. Network connectivity of motor control in the ageing brain. NeuroImage Clin. 2018, 18, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Allali, G.; Van Der Meulen, M.; Beauchet, O.; Rieger, S.W.; Vuilleumier, P.; Assal, F. The Neural Basis of Age-Related Changes in Motor Imagery of Gait: An fMRI Study. J. Gerontol. Ser. A 2013, 69, 1389–1398. [Google Scholar] [CrossRef] [PubMed]
- Zwergal, A.; Linn, J.; Xiong, G.; Brandt, T.; Strupp, M.; Jahn, K. Aging of human supraspinal locomotor and postural control in fMRI. Neurobiol. Aging 2012, 33, 1073–1084. [Google Scholar] [CrossRef] [PubMed]
- Fallani, F.D.V.; Astolfi, L.; Cincotti, F.; Mattia, D.; Marciani, M.G.; Salinari, S.; Kurths, J.; Gao, S.; Cichocki, A.; Colosimo, A.; et al. Cortical functional connectivity networks in normal and spinal cord injured patients: Evaluation by graph analysis. Hum. Brain Mapp. 2007, 28, 1334–1346. [Google Scholar] [CrossRef]
- Michel, C.M.; Brunet, D. EEG Source Imaging: A Practical Review of the Analysis Steps. Front. Neurol. 2019, 10, 325. [Google Scholar] [CrossRef]
- Jatoi, M.A.; Kamel, N.; Malik, A.; Faye, I. EEG based brain source localization comparison of sLORETA and eLORETA. Australas. Phys. Eng. Sci. Med. 2014, 37, 713–721. [Google Scholar] [CrossRef]
- Heyse, J.; Sheybani, L.; Vulliémoz, S.; van Mierlo, P. Evaluation of Directed Causality Measures and Lag Estimations in Multivariate Time-Series. Front. Syst. Neurosci. 2021, 15, 1–19. [Google Scholar] [CrossRef]
Group | No | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | M (SD) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ABP | Age | 37 | 32 | 36 | 34 | 32 | 27 | 45 | 34 | 49 | 27 | 35 (7) |
PnP | Age | 51 | 22 | 47 | 41 | 59 | 43 | 24 | 38 | 62 | 34 | 42 (13) |
Lev | T7/T10 | L1 | T11 | T12 | T6 | T6/T7 | L1 | L1 | T3/T5 | T6 | - | |
Com | D | B | D | A | A | B | A | A | A | A | - | |
Weeks with SCI | 12 | 12 | 7 | 4 | 12 | 21 | 7 | 4 | 10 | 10 | 10 (5) | |
PdP | Age | 70 | 49 | 19 | 69 | 32 | 46 | 49 | 32 | - | - | 46 (18) |
Lev | T7/T8 | T12 | C5/C6 | L2 | T3 | T5 | T6 | C3 | - | - | - | |
Com | D | A | A | B | A | A | A | A | - | - | - | |
Weeks with SCI | 9 | 6 | 12 | 6 | 24 | 6 | 4 | 6 | - | - | 9 (6) | |
PwP | Age | 33 | 59 | 27 | 32 | 30 | 59 | 29 | 37 | 49 | 75 | 43 (16) |
Lev | T12 | T7/T8 | C5/C6 | T3 | T10 | T8 | C3 | T6 | C4 | T6 | - | |
Com | B | A | A | A | A | C | D | B | A | C | - | |
Weeks with SCI | 20 | 12 | 17 | 24 | 12 | 26 | 6 | 28 | 6 | 6 | 16 (9) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumari, R.; Jarjees, M.; Susnoschi-Luca, I.; Purcell, M.; Vučković, A. Effective Connectivity in Spinal Cord Injury-Induced Neuropathic Pain. Sensors 2022, 22, 6337. https://doi.org/10.3390/s22176337
Kumari R, Jarjees M, Susnoschi-Luca I, Purcell M, Vučković A. Effective Connectivity in Spinal Cord Injury-Induced Neuropathic Pain. Sensors. 2022; 22(17):6337. https://doi.org/10.3390/s22176337
Chicago/Turabian StyleKumari, Radha, Mohammed Jarjees, Ioana Susnoschi-Luca, Mariel Purcell, and Aleksandra Vučković. 2022. "Effective Connectivity in Spinal Cord Injury-Induced Neuropathic Pain" Sensors 22, no. 17: 6337. https://doi.org/10.3390/s22176337