Empowering Intelligent Surfaces and User Pairing for IoT Relaying Systems: Outage Probability and Ergodic Capacity Performance
Abstract
:1. Introduction
2. The Related Works
2.1. Considerations of the Related Works
2.2. Motivations and Our Contributions
- We consider how RIS-NOMA and relay can work together to perform signal transmission to the two users in the framework over Rayleigh fading distribution and the network is considered as following perfect SIC and CSI.
- We first aim to clarify how the hybrid scheme exhibits some advantageous points compared with the related benchmark such as RIS-OMA. In particular, we simulate and determine main factors affecting RIS-NOMA to increase the effectiveness of processing.
- To conduct performance analysis, we introduce the closed-form expressions for outage probability (OP) and ergodic capacity (EC) for two representative users and some scenarios related to the presence of OMA, RIS and relay for comparison purposes.
- The numerical analysis can be performed via Monte-Carlo simulations to verify the validity of the obtained expressions. The simulations were performed to confirm the number of meta-surfaces at RIS, and the transmit SNR at the source are the main parameters affecting system performance.
3. System Model
4. OP Analysis
4.1. OP of
4.2. OP of
5. EC Analysis
5.1. EC of
5.2. EC of
5.3. The Asymptotic Expression for Ergodic Rate of
6. Benchmark Scheme: RIS-OMA
6.1. Outage Performance Analysis
6.2. Computation of EC
7. Numerical Results and Discussion
- Considering the curves of OP versus for different , in order to obtain OP of 0.65, for the OMA case is required to be 40 (dB). Furthermore, to satisfy the setting of NOMA in the case of = 0.3 user needs at 33 (dB) while user needs = 37 (dB).
- Considering the curves of OP versus for different , if we want OP to equal 0.5 at = 0.5 (bps/Hz), for user must be 36.5 (dB), and user requires = 37 (dB). However, increasing target rates to = 0.7 (bps/Hz) and maintaining OP at 0.5, these requirements need user served by the average SNR at the source = 38.5 (dB), and corresponds to = 40 (dB).
- We need to know how the distances among nodes enact changes in OP with respect to , i.e., need to be evaluated. When = 10 (m), the expected OP of 0.5 occurs at user for the case = 0.15 (bps/Hz), while user corresponds to = 0.16 (bps/Hz). If we increase to 20 (m), the expected OP of 0.5 for user occurs in the case of = 0.05 (bps/Hz), and user corresponds to = 0.1 (bps/Hz).
- We shift our attention to EC versus for different Q with G = K = 1000. When Q = 100 the EC of 1 (bit/s/Hz) for user occurs when = 40 (dB), while user corresponds to = 49 (dB). If the setting of RIS is changed to Q = 500, the EC of 1 (bit/s/Hz) required at user when equals 41 (dB), and equals 46 (dB) for user .
8. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
References
- Wu, Q.; Zhang, S.; Zheng, B.; You, C.; Zhang, R. Intelligent Reflecting Surface-Aided Wireless Communications: A Tutorial. IEEE Trans. Commun. 2021, 69, 3313–3351. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, Y.-J.A.; Shi, Y.; Yan, W.; Liu, H. Reconfigurable-Intelligent-Surface Empowered Wireless Communications: Challenges and Opportunities. IEEE Wirel. Commun. 2021, 28, 136–143. [Google Scholar] [CrossRef]
- Basar, E. Reconfigurable Intelligent Surface-Based Index Modulation: A New Beyond MIMO Paradigm for 6G. IEEE Trans. Commun. 2020, 68, 3187–3196. [Google Scholar] [CrossRef]
- Tang, W.; Chen, M.Z.; Chen, X.; Dai, J.Y.; Han, Y.; Renzo, M.D.; Zeng, Y.; Jin, S.; Cheng, Q.; Cui, T.J. Wireless Communications With Reconfigurable Intelligent Surface: Path Loss Modeling and Experimental Measurement. IEEE Trans. Wirel. Commun. 2021, 20, 421–439. [Google Scholar] [CrossRef]
- Chen, J.; Liang, Y.; Cheng, H.V.; Wei, Y. Channel estimation for reconfigurable intelligent surface aided multi-user MIMO systems. arXiv 2019, arXiv:1912.03619. [Google Scholar]
- Tang, W.; Dai, J.Y.; Chen, M.Z.; Wong, K.; Li, X.; Zhao, X.; Jin, S.; Cheng, Q.; Cui, T.J. MIMO Transmission Through Reconfigurable Intelligent Surface: System Design, Analysis, and Implementation. IEEE J. Sel. Areas Commun. 2020, 38, 2683–2699. [Google Scholar] [CrossRef]
- Hu, J.; Zhan, H.; Di, B.; Li, L.; Bian, K.; Song, L.; Poor, H.V. Reconfigurable intelligent surface based RF sensing: Design, optimization, and implementation. IEEE J. Sel. Areas Commun. 2020, 38, 2700–2716. [Google Scholar] [CrossRef]
- Guo, H.; Liang, Y.; Chen, J.; Larsson, E.G. Weighted Sum-Rate Maximization for Reconfigurable Intelligent Surface Aided Wireless Networks. IEEE Trans. Wirel. Commun. 2020, 19, 3064–3076. [Google Scholar] [CrossRef]
- Ellingson, S.W. Path Loss in Reconfigurable Intelligent Surface-Enabled Channels. In Proceedings of the 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Helsinki, Finland, 13–16 September 2021; pp. 829–835. [Google Scholar] [CrossRef]
- Cui, M.; Zhang, G.; Zhang, R. Secure Wireless Communication via Intelligent Reflecting Surface. IEEE Wirel. Commun. Lett. 2019, 8, 1410–1414. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, R. Capacity Characterization for Intelligent Reflecting Surface Aided MIMO Communication. IEEE J. Sel. Areas Commun. 2020, 38, 1823–1838. [Google Scholar] [CrossRef]
- Sharma, P.K.; Garg, P. Intelligent Reflecting Surfaces to Achieve the Full-Duplex Wireless Communication. IEEE Commun. Lett. 2021, 25, 622–626. [Google Scholar] [CrossRef]
- Do, D.-T.; Nguyen, T.-T.T.; Nguyen, T.N.; Li, X.; Voznak, M. Uplink and Downlink NOMA Transmission Using Full-Duplex UAV. IEEE Access 2020, 8, 164347–164364. [Google Scholar] [CrossRef]
- Do, D.-T.; Nguyen, M.-S.V.; Nguyen, T.N.; Li, X.; Choi, K. Enabling Multiple Power Beacons for Uplink of NOMA-Enabled Mobile Edge Computing in Wirelessly Powered IoT. IEEE Access 2020, 8, 148892–148905. [Google Scholar] [CrossRef]
- Do, D.-T.; Nguyen, T.-L.; Ekin, S.; Kaleem, Z.; Voznak, M. Joint User Grouping and Decoding Order in Uplink/Downlink MISO/SIMO-NOMA. IEEE Access 2020, 8, 143632–143643. [Google Scholar] [CrossRef]
- Dai, L.; Wang, B.; Ding, Z.; Wang, Z.; Chen, S.; Hanzo, L. A Survey of Non-Orthogonal Multiple Access for 5G. IEEE Commun. Surv. Tutor. 2018, 20, 2294–2323. [Google Scholar] [CrossRef]
- Ding, Z.; Adachi, F.; Poor, H.V. The Application of MIMO to Non-Orthogonal Multiple Access. IEEE Trans. Wirel. Commun. 2016, 15, 537–552. [Google Scholar] [CrossRef]
- Wei, X.; Liu, H.; Geng, Z.; Zheng, K.; Xu, R.; Liu, Y.; Chen, P. Application of Non-Orthogonal Multiple Access in LTE and 5G Networks. IEEE Commun. Mag. 2017, 55, 185–191. [Google Scholar]
- Khan, W.U.; Jameel, F.; Kumar, N.; Jäntti, R.; Guizani, M. Backscatter-Enabled Efficient V2X Communication With Non-Orthogonal Multiple Access. IEEE Trans. Veh. Technol. 2021, 70, 1724–1735. [Google Scholar] [CrossRef]
- Zheng, B.; Wu, Q.; Zhang, R. Intelligent Reflecting Surface-Assisted Multiple Access With User Pairing: NOMA or OMA? IEEE Commun. Lett. 2020, 24, 753–757. [Google Scholar] [CrossRef]
- Zuo, J.; Liu, Y.; Qin, Z.; Al-Dhahir, N. Resource allocation in intelligent reflecting surface assisted NOMA systems. IEEE Trans. Commun. 2020, 68, 7170–7183. [Google Scholar] [CrossRef]
- Zuo, J.; Liu, Y.; Qin, Z.; Shen, C. The Application of Intelligent Reflecting Surface in Downlink NOMA Systems. In Proceedings of the 2020 IEEE International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, 7–11 June 2020; pp. 1–6. [Google Scholar]
- Yue, X.; Liu, Y. Performance Analysis of Intelligent Reflecting Surface Assisted NOMA Networks. IEEE Trans. Wirel. Commun. 2022, 21, 2623–2636. [Google Scholar] [CrossRef]
- Zuo, J.; Liu, Y.; Basar, E.; Dobre, O.A. Intelligent Reflecting Surface Enhanced Millimeter-Wave NOMA Systems. IEEE Commun. Lett. 2020, 24, 2632–2636. [Google Scholar] [CrossRef]
- Ding, Z.; Poor, H.V. A Simple Design of IRS-NOMA Transmission. IEEE Commun. Lett. 2020, 24, 1119–1123. [Google Scholar] [CrossRef]
- Zhang, Z.; Lv, L.; Wu, Q.; Deng, H.; Chen, J. Robust and Secure Communications in Intelligent Reflecting Surface Assisted NOMA Networks. IEEE Commun. Lett. 2021, 25, 739–743. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, K.H.; Liu, Y.; Teh, K.C.; Poor, H.V. Downlink and Uplink Intelligent Reflecting Surface Aided Networks: NOMA and OMA. IEEE Trans. Wirel. Commun. 2021, 20, 3988–4000. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, J.; Wu, Q.; Liu, Y.; Lv, L.; Su, X. Securing NOMA Networks by Exploiting Intelligent Reflecting Surface. IEEE Trans. Commun. 2022, 70, 1096–1111. [Google Scholar] [CrossRef]
- Mu, X.; Liu, Y.; Guo, L.; Lin, J.; Poor, H.V. Intelligent Reflecting Surface Enhanced Multi-UAV NOMA Networks. IEEE J. Sel. Areas Commun. 2021, 39, 3051–3066. [Google Scholar] [CrossRef]
- Hemanth, A.; Umamaheswari, K.; Pogaku, A.C.; Do, D.-T.; Lee, B.M. Outage Performance Analysis of Reconfigurable Intelligent Surfaces-Aided NOMA Under Presence of Hardware Impairment. IEEE Access 2020, 8, 212156–212165. [Google Scholar] [CrossRef]
- Ding, Z.; Schober, R.; Poor, H.V. On the Impact of Phase Shifting Designs on IRS-NOMA. IEEE Wirel. Commun. Lett. 2020, 9, 1596–1600. [Google Scholar] [CrossRef]
- Lin, Z.; Niu, H.; An, K.; Wang, Y.; Zheng, G.; Chatzinotas, S.; Hu, Y. Refracting RIS-Aided Hybrid Satellite-Terrestrial Relay Networks: Joint Beamforming Design and Optimization. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3717–3724. [Google Scholar]
- Lin, Z.; Lin, M.; Wang, J.-B.; de Cola, T.; Wang, J. Joint Beamforming and Power Allocation for Satellite-Terrestrial Integrated Networks With Non-Orthogonal Multiple Access. IEEE J. Sel. Top. Signal Process. 2019, 13, 657–670. [Google Scholar] [CrossRef]
- An, K.; Liang, T.; Zheng, G.; Yan, X.; Li, Y.; Chatzinotas, S. Performance Limits of Cognitive-Uplink FSS and Terrestrial FS for Ka-Band. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 2604–2611. [Google Scholar] [CrossRef]
- An, K.; Lin, M.; Ouyang, J.; Zhu, W. Secure Transmission in Cognitive Satellite Terrestrial Networks. IEEE J. Sel. Areas Commun. 2016, 34, 3025–3037. [Google Scholar] [CrossRef]
- Mohamed, E.M.; Hashima, S.; Hatano, K.; Aldossari, S.A. Two-Stage Multiarmed Bandit for Reconfigurable Intelligent Surface Aided Millimeter Wave Communications. Sensors 2022, 22, 2179. [Google Scholar] [CrossRef]
- Mohamed, E.M.; Hashima, S.; Hatano, K. Energy Aware Multiarmed Bandit for Millimeter Wave-Based UAV Mounted RIS Networks. IEEE Wirel. Commun. Lett. 2022, 11, 1293–1297. [Google Scholar] [CrossRef]
- Mohamed, E.M.; Hashima, S.; Hatano, K.; Fouda, M.M. Cost-Effective MAB Approaches for Reconfigurable Intelligent Surface Aided Millimeter Wave Relaying. IEEE Access 2022, 10, 81642–81653. [Google Scholar] [CrossRef]
- Sodhro, A.H.; Zahid, N. AI-Enabled Framework for Fog Computing Driven E-Healthcare Applications. Sensors 2021, 21, 8039. [Google Scholar] [CrossRef]
- Abdullah, Z.; Chen, G.; Lambotharan, S.; Chambers, J.A. A Hybrid Relay and Intelligent Reflecting Surface Network and Its Ergodic Performance Analysis. IEEE Wirel. Commun. Lett. 2020, 9, 1653–1657. [Google Scholar] [CrossRef]
- Lee, D.; Lee, J.H. Outage probability of decode-and-forward opportunistic relaying in a multicell environment. IEEE Trans. Veh. Technol. 2011, 60, 1925–1930. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Trans. Wirel. Commun. 2019, 18, 5394–5409. [Google Scholar] [CrossRef]
- Do, D.; Le, A.; Liu, Y.; Jamalipour, A. User Grouping and Energy Harvesting in UAV-NOMA System with AF/DF Relaying. IEEE Trans. Veh. Technol. 2021, 70, 11855–11868. [Google Scholar] [CrossRef]
- Yang, L.; Yang, J.; Xie, W.; Hasna, M.O.; Tsiftsis, T.; Renzo, M.D. Secrecy Performance Analysis of RIS-Aided Wireless Communication Systems. IEEE Trans. Veh. Technol. 2020, 69, 12296–12300. [Google Scholar] [CrossRef]
- Yue, X.; Liu, Y.; Kang, S.; Nallanathan, A.; Ding, Z. Exploiting Full/Half-Duplex User Relaying in NOMA Systems. IEEE Trans. Commun. 2018, 66, 560–575. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, G.; Atapattu, S.; Tsiftsis, T.A.; Tellambura, C. Is Backscatter Link Stronger than Direct Link in Reconfigurable Intelligent Surface-Assisted System? IEEE Commun. Lett. 2020, 24, 1342–1346. [Google Scholar] [CrossRef]
- Zou, L.; Chen, J.; Lv, L.; He, B. Capacity Enhancement of D2D Aided Coordinated Direct and Relay Transmission Using NOMA. IEEE Commun. Lett. 2020, 24, 2128–2132. [Google Scholar] [CrossRef]
- Xiao, Y.; Hao, L.; Ma, Z.; Ding, Z.; Zhang, Z.; Fan, P. Forwarding Strategy Selection in Dual-Hop NOMA Relaying Systems. IEEE Commun. Lett. 2018, 22, 1644–1647. [Google Scholar] [CrossRef]
- Hildebrand, E. Introduction to Numerical Analysis; Dover: New York, NY, USA, 1987. [Google Scholar]
- Yang, Z.; Ding, Z.; Wu, Y.; Fan, P. Novel Relay Selection Strategies for Cooperative NOMA. IEEE Trans. Veh. Technol. 2017, 66, 10114–10123. [Google Scholar] [CrossRef] [Green Version]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series and Products, 6th ed.; Academic Press: New York, NY, USA, 2000. [Google Scholar]
Context | [30] | [31] | [32] | [33] | [34] | [35] | [36] | [37] | [38] | [39] | [40] | [41] | [42] | Our Work |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RIS-NOMA system | x | x | x | x | x | |||||||||
RIS-OMA system | x | x | x | x | x | x | x | |||||||
Hardware Impairment | x | |||||||||||||
Artificial Intelligence | x | |||||||||||||
Satellite Terrestrial | x | x | x | x | ||||||||||
Hybrid RIS and relay approach | x | x | ||||||||||||
Rayleigh fading | x | x | x | x | x | x | ||||||||
Perfect SIC and CSI | x | x | x | |||||||||||
Optimization | x | x | x | x | x | x | x | x | x | |||||
OP Analysis | x | x | x | x | ||||||||||
EC Analysis | x | |||||||||||||
Asymptotic expression | x | x | x | x | x |
Symbol | Description |
---|---|
Probability | |
The cumulative distribution function (CDF) of an RV X | |
The probability density function (PDF) of an RV X | |
Expectation operator | |
The exponential integral function | |
The phase of a complex number x | |
The transmit power at | |
The transmit power at R | |
The information symbol of with , | |
The information symbol of with | |
The corresponding power allocation coefficients of | |
The additive white Gaussian noise (AWGN) at R with zero mean and variance of | |
The AWGN at with zero mean and variance of | |
The AWGN at with zero mean and variance of | |
The path loss exponent | |
The target rate at the user to detect | |
The target rate at the user to detect | |
The complex channel coefficient for the link R | |
The complex channel coefficient for the link | |
The complex channel coefficient for the link | |
The complex channel coefficient for the link | |
The complex channel coefficient for the link | |
The complex channel coefficient for the link | |
The complex channel coefficient for the link | |
The complex channel coefficient for the link | |
The complex channel coefficient for the link | |
The complex channel coefficient for the link |
Parameters | Notation | Values |
---|---|---|
NOMA power splitting factors | ||
The required rates | ; | 0.5 (bps/Hz); 0.7 (bps/Hz) |
Amplitude reflection coefficient of RIS [46] | = ∂ = | 0.5 |
Path loss exponent | 2.5 | |
The number of meta-surface in RIS | Q | 100 |
Distances (Normalized)[42] | ; | 10 (m); 20 (m) |
Channel gains [44] | 1 | |
The average SNR at transmitter [42] | 30 (dB) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dang, H.-P.; Nguyen, M.-S.V.; Do, D.-T.; Nguyen, M.-H.; Pham, M.-T.; Kim, A.-T. Empowering Intelligent Surfaces and User Pairing for IoT Relaying Systems: Outage Probability and Ergodic Capacity Performance. Sensors 2022, 22, 6576. https://doi.org/10.3390/s22176576
Dang H-P, Nguyen M-SV, Do D-T, Nguyen M-H, Pham M-T, Kim A-T. Empowering Intelligent Surfaces and User Pairing for IoT Relaying Systems: Outage Probability and Ergodic Capacity Performance. Sensors. 2022; 22(17):6576. https://doi.org/10.3390/s22176576
Chicago/Turabian StyleDang, Huu-Phuc, Minh-Sang Van Nguyen, Dinh-Thuan Do, Minh-Hoa Nguyen, Minh-Triet Pham, and Anh-Tuan Kim. 2022. "Empowering Intelligent Surfaces and User Pairing for IoT Relaying Systems: Outage Probability and Ergodic Capacity Performance" Sensors 22, no. 17: 6576. https://doi.org/10.3390/s22176576
APA StyleDang, H. -P., Nguyen, M. -S. V., Do, D. -T., Nguyen, M. -H., Pham, M. -T., & Kim, A. -T. (2022). Empowering Intelligent Surfaces and User Pairing for IoT Relaying Systems: Outage Probability and Ergodic Capacity Performance. Sensors, 22(17), 6576. https://doi.org/10.3390/s22176576