Multi-Sensor Image Fusion Method for Defect Detection in Powder Bed Fusion
Abstract
:1. Introduction
2. FMP Image Fusion Method
2.1. FDST
2.2. MSSTO
2.3. Improved PCNN
3. Experimental Studies and Discussion
3.1. FMP Image Fusion Procedure
- Using the FDST to decompose the registered image A and image B into low-frequency sub-band coefficients and high-frequency sub-band coefficients, respectively.
- In the FDST transform domain, the MSSTO transform is used to extract the image detail bright and dark information in the low-frequency sub-band coefficients of image A and image B, respectively.
- The light and dark information of the image extracted by MSSTO are merged into the low-frequency coefficients after fusion, and the low-frequency fusion coefficients are obtained.
- In the FDST transform domain, the modified spatial frequency (MSF) is used to extract the gradient energy of the image in the vertical, horizontal, and diagonal directions, and the high-frequency sub-band coefficient MSF value is calculated, which is used as the external excitation of the PCNN.
- Using the PCNN criterion to obtain high-frequency fusion coefficients.
- The final fused image is reconstructed from the fused low-frequency sub-band fusion coefficients and the high-frequency sub-band fusion coefficients using the FDST inverse transform.
3.2. Experimental Setup
3.3. Defect Detection and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peng, T.; Chen, C. Influence of energy density on energy demand and porosity of 316L stainless steel fabricated by selective laser melting. Int. J. Precis. Eng. Manuf. Green Technol. 2018, 5, 55–62. [Google Scholar] [CrossRef]
- Echeta, I.; Feng, X.; Dutton, B.; Leach, R.; Piano, S. Review of defects in lattice structures manufactured by powder bed fusion. Int. J. Adv. Manuf. Technol. 2019, 106, 2649–2668. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Lo, L.; Ding, S. Selective laser melting of aluminium components. J. Mater. Process. Technol. 2011, 211, 275–284. [Google Scholar]
- Sing, S.; Huang, S.; Goh, G.; Tey, C.; Tan, J.; Yeong, W. Emerging metallic systems for additive manufacturing: In-situ alloying and multi-metal processing in laser powder bed fusion. Prog. Mater. Sci. 2021, 119, 100795. [Google Scholar] [CrossRef]
- Wei, C.; Li, L. Recent progress and scientific challenges in multi-material additive manufacturing via laser-based powder bed fusion. Virtual Phys. Prototyp. 2021, 16, 347–371. [Google Scholar] [CrossRef]
- Vasileska, E.; Demir, A.G.; Colosimo, B.M.; Previtali, B. Layer-wise control of selective laser melting by means of inline melt pool area measurements. J. Laser Appl. 2020, 32, 022057. [Google Scholar] [CrossRef]
- Verhaeghe, F.; Craeghs, T.; Heulens, J.; Pandelaers, L. A pragmatic model for selective laser melting with evaporation. Acta Mater. 2009, 57, 6006–6012. [Google Scholar] [CrossRef]
- Aboulkhair, N.T.; Simonelli, M.; Parry, L.; Ashcroft, I.; Tuck, C.; Hague, R. 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting. Prog. Mater. Sci. 2019, 106, 100578. [Google Scholar] [CrossRef]
- Yan, X.; Chen, C.; Chang, C.; Dong, D.; Zhao, R.; Jenkins, R.; Wang, J.; Ren, Z.; Liu, M.; Liao, H.; et al. Study of the microstructure and mechanical performance of CX stainless steel processed by selective laser melting (SLM). Mater. Sci. Eng. 2020, 781, 139227. [Google Scholar] [CrossRef]
- Al-Rubaie, K.S.; Melotti, S.; Rabelo, A.; Paiva, J.M.; Elbestawi, M.A.; Veldhuis, S.C. Machinability of SLM-produced Ti6Al4V titanium alloy parts. J. Manuf. Process. 2020, 57, 68–786. [Google Scholar] [CrossRef]
- Chan, Y.F.; Chen, C.J.; Zhang, M. Review of on-line monitoring research on metal additive manufacturing process. Mater. Rep. 2019, 33, 2839–2867. [Google Scholar]
- Tapia, G.; Elwany, A. A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing. J. Manuf. Sci. Eng. 2014, 136, 060801. [Google Scholar] [CrossRef]
- Yakout, M.; Elbestawi, M.; Veldhuis, S.C. A Review of Metal Additive Manufacturing Technologies. Solid State Phenom. 2018, 278, 1–14. [Google Scholar] [CrossRef]
- Zur Jacobsmühlen, J.; Kleszczynski, S.; Schneider, D.; Witt, G. High-resolution imaging for inspection of laser beam melting systems. In Proceedings of the IEEE International Instrumentation and Measurement Technology Conference, Minneapolis, MN, USA, 6–9 May 2013; pp. 707–712. [Google Scholar]
- Grasso, M.; Laguzza, V.; Semeraro, Q.; Colosimo, B.M. In-process monitoring of selective laser melting: Spatial detection of defects via image data analysis. J. Manuf. Sci. Eng. 2017, 139, 051001. [Google Scholar] [CrossRef]
- Caltanissetta, F.; Grasso, M.; Petro, S.; Colosimo, B.M. Characterization of in-situ measurements based on layerwise imaging in laser powder bed fusion. Addit. Manuf. 2018, 24, 183–199. [Google Scholar] [CrossRef]
- Zhang, Y.; Hong, G.S.; Ye, D.; Zhu, K.; Fuh, J.Y. Extraction and evaluation of melt pool, plume and spatter information for powder-bed fusion AM process monitoring. Mater. Des. 2018, 156, 458–469. [Google Scholar] [CrossRef]
- Craeghs, T.; Bechmann, F.; Berumen, S.; Kruth, J.P. Feedback control of Layerwise Laser Melting using optical sensors. Phys. Procedia 2010, 5, 505–514. [Google Scholar] [CrossRef] [Green Version]
- Furumoto, T.; Egashira, K.; Munekage, K.; Abe, S. Experimental investigation of melt pool behaviour during selective laser melting by high-speed imaging. CIRP Ann. 2018, 67, 253–256. [Google Scholar] [CrossRef]
- Berumen, S.; Bechmann, F.; Lindner, S.; Kruth, J.P.; Craeghs, T. Quality control of laser- and powder bed-based Additive Manufacturing (AM) technologies. Phys. Procedia 2010, 5, 617–622. [Google Scholar] [CrossRef] [Green Version]
- Gould, B.; Wolff, S.; Parab, N.; Zhao, C.; Lorenzo-Martin, M.C.; Fezzaa, K.; Greco, A.; Sun, T. In Situ Analysis of Laser Powder Bed Fusion Using Simultaneous High-Speed Infrared and X-ray Imaging. JOM 2020, 73, 201–211. [Google Scholar] [CrossRef]
- Peng, X.; Kong, L.; Chen, Y.; Shan, Z.; Qi, L. Design of a Multi-sensor Monitoring System for Additive Manufacturing Process. Nanomanuf. Metrol. 2020, 3, 142–150. [Google Scholar] [CrossRef]
- Gusarov, A.; Okun’Kova, A.A.; Peretyagin, P.; Zhirnov, I.V.; Podrabinnik, P.A. Means of Optical Diagnostics of Selective Laser Melting with Non-Gaussian Beams. Meas. Technol. 2015, 58, 872–877. [Google Scholar] [CrossRef]
- Gaikwad, A.; Giera, B.; Guss, G.M.; Forien, J.B.; Matthews, M.J.; Rao, P. Heterogeneous sensing and scientific machine learning for quality assurance in laser powder bed fusion– A single-track study. Addit. Manuf. 2020, 36, 101659. [Google Scholar] [CrossRef]
- Yakout, M.; Phillips, I.; Elbestawi, M.A.; Fang, Q. In-situ monitoring and detection of spatter agglomeration and delamination during laser-based powder bed fusion of Invar 36. Opt Laser Technol. 2020, 136, 106741. [Google Scholar] [CrossRef]
- Liu, Z.; Feng, Y. Infrared and Visible Image Fusion Based on Compressive Sensing and OSS-ICA-Bases. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 1852–1856. [Google Scholar] [CrossRef]
- Shahdoosti, H.R.; Ghassemian, H. Combining the spectral PCA and spatial PCA fusion methods by an optimal filter. Inf. Fusion 2016, 27, 150–160. [Google Scholar] [CrossRef]
- Xie, Z.; Zhang, S.; Yu, X.; Liu, G. Infrared and visible face fusion recognition based on extended sparse representation classification and local binary patterns for the single sample problem. J. Opt. Technol. 2019, 86, 408–413. [Google Scholar] [CrossRef]
- Toet, A.; Van Ruyven, L.J.; Valeton, J.M. Merging Thermal and Visual Images By A Contrast Pyramid. Opt. Eng. 1989, 28, 287789. [Google Scholar] [CrossRef]
- Srivastava, R.; Khare, A. Multifocus noisy image fusion using contourlet transform. Imaging Sci. J. 2015, 63, 1743131–1743422. [Google Scholar] [CrossRef]
- Guo, B.; Zhang, Q.; Hou, Y. Region-based fusion of infrared and visible images using nonsubsampled contourlet transform. Chin. Opt. Lett. 2008, 2008, 338–341. [Google Scholar] [CrossRef] [Green Version]
- Kamstra, L. Nonlinear Discrete Wavelet Transforms over Finite Sets and an Application to Binary Image Compression. J. Math. Imaging Vis. 2005, 23, 321–343. [Google Scholar] [CrossRef]
- Ioannidou, S.; Karathanassi, V. Investigation of the Dual-Tree Complex and Shift-Invariant Discrete Wavelet Transforms on Quickbird Image Fusion. IEEE Geosci. Remote Sens. Lett. 2007, 4, 166–170. [Google Scholar] [CrossRef]
- Bai, Y.J.; Xiong, S.H.; Wu, X.Q. Infrared and visible images fusion based on FDST and MSS. Sci. Technol. Eng. 2017, 17, 215–219. [Google Scholar]
- Bai, X. Infrared and visual image fusion through feature extraction by morphological sequential toggle operator. Infrared Phys. Technol. 2015, 71, 77–86. [Google Scholar] [CrossRef]
- Lian, J.; Yang, Z.; Liu, J.; Sun, W.; Zheng, L.; Du, X.; Yi, Z.; Shi, B.; Ma, Y. An Overview of Image Segmentation Based on Pulse-Coupled Neural Network. Arch. Comput. Methods Eng. 2019, 28, 387–403. [Google Scholar] [CrossRef]
- Garima, P.; Umesh, G. A compendious study of super-resolution techniques by single image. Optik 2018, 166, 147–160. [Google Scholar]
- Bai, X. Morphological infrared image enhancement based on multi-scale sequential toggle operator using opening and closing as primitives. Infrared Phys. Technol. 2015, 68, 143–151. [Google Scholar] [CrossRef]
- Li, M.J.; Yu, B.D.; Xiao, L.W. Image Fusion Algorithm Based on Wavelet Transform and Laplacian Pyramid. Adv. Mater. Res. 2013, 2013, 2846–2849. [Google Scholar] [CrossRef]
- Toet, A. Image fusion by a ratio of low pass pyramid Pattern Recogn. Pattern Recogn. Lett. 1989, 9, 245–253. [Google Scholar] [CrossRef]
- Lewis, J.J.; O’Callaghan, R.J.; Nikolov, S.G.; Bull, D.R.; Canagarajah, N. Pixel- and region-based image fusion with complex wavelets. Inf. Fusion 2007, 8, 119–130. [Google Scholar] [CrossRef]
- Hyötyniemi, H. Multivariate Regression-Techniques and Tools; Helsinki University of Technology, Control Engineering Laboratory: Helsinki, Finland, 2001; 207p. [Google Scholar]
- Shu, Z. PCNN Model Automatic Linking Strength Determination Based on Geometric Moments in Image Fusion. J. Algorithms Comput. Technol. 2014, 8, 17–26. [Google Scholar] [CrossRef]
- Zhao, L.M. Research on Insulator Defect Detection Method Based on Image Fusion; Xi’an Shiyou University: Xi’an, China, 2021. [Google Scholar]
- Liu, M.; Yi, W.C.; Zhao, Y.J. Research on remote sensing image dehazing based on generative adversarial networks. Spacecr. Recovery Remote Sens. 2020, 41, 14–20. [Google Scholar]
- Ou, J.M.; Hu, X.; Yang, J.X. Low-light image enhancement algorithm based on improved retinex-net. Int. J. Pattern Recog. 2021, 34, 77–86. [Google Scholar]
Design Parameters | Visible System | Infrared System |
---|---|---|
Wavelength (μm) | 0.4–0.7 | 0.9–1.7 |
Image sensor type | CMOS | InGaAs |
pixel count | 7728 × 5368 | 320 × 256 |
Pixel size (μm) | 1.1 | 30 |
Focal length f (mm) | 50 | 50 |
F-number | 2.5 | 1.5 |
Object field size (mm) | 51.90 × 36.30 | 58.50 × 46.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, X.; Kong, L.; Han, W.; Wang, S. Multi-Sensor Image Fusion Method for Defect Detection in Powder Bed Fusion. Sensors 2022, 22, 8023. https://doi.org/10.3390/s22208023
Peng X, Kong L, Han W, Wang S. Multi-Sensor Image Fusion Method for Defect Detection in Powder Bed Fusion. Sensors. 2022; 22(20):8023. https://doi.org/10.3390/s22208023
Chicago/Turabian StylePeng, Xing, Lingbao Kong, Wei Han, and Shixiang Wang. 2022. "Multi-Sensor Image Fusion Method for Defect Detection in Powder Bed Fusion" Sensors 22, no. 20: 8023. https://doi.org/10.3390/s22208023
APA StylePeng, X., Kong, L., Han, W., & Wang, S. (2022). Multi-Sensor Image Fusion Method for Defect Detection in Powder Bed Fusion. Sensors, 22(20), 8023. https://doi.org/10.3390/s22208023