The Use of Audio Signals for Detecting COVID-19: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Study Guidelines
2.2. Search Strategy and Study Eligibility
2.3. Inclusion and Exclusion Criteria
2.4. Data Extraction and Risk of Bias
3. Results
3.1. Study Selection
3.2. Pre-Processing Methods
3.3. Feature Extraction
3.4. Classification Algorithms
3.5. Metrics
Date | Ref. | Datasets [T] | Device (SR) | Pre-Processing | Features | Classifier | SP (%) | SE (%) | F1 (%) | ACC (%) | AUC (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
2022 | Son and Lee [59] | Coughvid [C] (6092) | nr (48 kHz) | CAD, Re-sampling | MFCC (13), SP, LMS, SCn, SB, SC, SR, CV (12) | CNN + DNN | 94.0 | 93.0 | nr | 94.0 | nr |
2022 | Tawfik et al. [31] | Coswara, Virufy [C] (1171, 121) | nr (nr) | Noise reduction, Trimming, CAD | MFCC (20), O, CV (nr), SC, SR, ZCR, SB, CQT | CNN | 99.7 | 99.6 | 98.4 | 98.5 | nr |
2022 | Alkhodari and Khandoker [57] | Coswara [B] (480) | Smartphone (48 kHz) | Re-sampling | MFCC (13), K, SE, ZCR, EE, Sk, HFD, KFD | CNN + RNN | 93.0 | 93.7 | 93.3 | 93.3 | 88.0 |
2022 | Kamble et al. [64] | Coswara [C] (1436) | nr (44.1 kHz) | nr | TECC (63×3) | GBF | nr | nr | nr | nr | 86.6 |
2022 | Gupta et al. [47] | Coughvid [C] (2500) | nr (nr) | CAD, Normalization, BF, Re-sampling | MFCC (13), RMS, SR, SC, ZCR, CF | DT + RF + k-NN + GBF | nr | nr | 79.9 | 79.9 | 79.7 |
2022 | Haritaoglu et al. [29] | Coswara, Virufy, Coughvid, Own data [C] (Total: 16007) | nr (nr) | CAD, Re-sampling | MFCC (64), LMS | SVM, CNN | SVM: 51.0, CNN: 74.0 | SVM: 89.0, CNN: 77.0 | nr | SVM: 59.0, CNN: 75.0 | SVM: 80.7, CNN: 80.2 |
2022 | Islam et al. [56] | Virufy [C] | nr (nr) | Trimming | SC, SE, SF, SR, MFCC (13), CV (12), HR | CNN | 100.0 | 95.0 | 97.4 | 97.5 | nr |
2022 | Pancaldi et al. [63] | Own data [B] | Stethoscope (4 kHz) | Trimming | LPCC (8) | BC | 81.8 | 70.6 | nr | 75.0 | nr |
2021 | Milani et al. [42] | Coswara [V] (nr) | nr (nr) | Silence removal | GTCC (nr) | k-NN, BT | nr | nr | 90.9 | 90.0 | nr |
2021 | Nellore et al. [44] | Coswara [C] (1273) | nr (nr) | Silence removal | FBC (128×3), F , F (4), RMS | FNN | 34.3 | 85.6 | nr | nr | 65.7 |
2021 | Pahar et al. [41] | Coswara, Cambridge, Sarcos [C] , 517, | nr (Cos.: 44.1 kHz, Cam.: 16 kHz, Sar.: 44.1 kHz) | Re-sampling, Silence removal | ZCR, FBC, K, MFCC (13×3) | CNN | 92.7 | 95.7 | nr | 94.0 | 95.9 |
2021 | Rahman and Lestari [66] | Coswara, Coughvid [C] (5120, 2601) | nr (nr) | Cou.: CAD, Cos.: None | NMFC | SVM | 55.6 | 90.0 | nr | nr | 73.3 |
2021 | Saha et al. [34] | Coswara [C] (426) | nr (44.1 kHz) | None | LMS | DCN | 98.8 | 99.5 | nr | 99.5 | 98.9 |
2021 | Sangle and Gaikwad [45] | Coswara [C] (825) | nr (44.1 kHz) | Normalization, Silence removal | MFCC (13×3), ZCR, K, Sk | CNN | 99.2 | 92.3 | 96.0 | 96.0 | 96.0 |
2021 | Sanjeev et al. [52] | Own data [C] (1350) | nr (nr) | Noise reduction, Silence removal | MFCC (20), SC, CV (nr), RMS, ZCR, SB, SR | FNN + CNN | nr | 82.0 | 83.0 | 85.0 | 94.0 |
2021 | Shkanov et al. [67] | Own data [C] (1876) | nr (nr) | Trimming | EVR (2) | SVM, RF | nr | nr | SVM: 93.0, RF: 94.0 | SVM: 93.0, RF: 94.0 | nr |
2021 | Wang et al. [68] | Own data [B] (104) | Stethoscope (nr) | Trimming | LMS | CNN | 93.1 | 90.0 | nr | 91.3 | nr |
2021 | Solak [35] | Virufy [C] (194) | nr (48 kHz) | None | NLF (9) | SVM | 96.8 | 93.1 | nr | 95.8 | 93.2 |
2021 | Zhang et al. [37] | Own data, Coswara, Virufy [C] (321, nr, nr) | nr (nr) | Noise reduction, CAD, Trimming | MFCC (nr) | CNN | 95.8 | 95.3 | 96.1 | 95.8 | 98.1 |
2021 | Chowdhury et al. [62] | Cambridge, Coswara, NoCoCoDa, Virufy [C] (525, 1319, 73, 121) | nr (nr) | Re-sampling | MFCC (40), TC (6), LMS, CV (12), SCn (7) | ET, GBF | nr | ET: 74.0, GBF: 80.0 | nr | nr | ET: 83.0, GBF: 82.0 |
2021 | Rao et al. [46] | Coughvid, Coswara [C] (nr) | nr (nr) | Silence removal, Re-sampling | LMS | CNN | 77.9 | 80.0 | nr | nr | 82.3 |
2021 | Shen et al. [55] | Coswara, Own data [C] (610, 707) | nr (nr) | Re-sampling, Trimming | bw-MFCC (128) | CNN + RNN | 93.3 | 81.8 | nr | nr | 96.1 |
2021 | Tena et al. [38] | Own data, Coswara, Cambridge, Virufy [C] (813 total) | nr (nr) | CAD, Re-sampling, Normalization | SEn, TFM, MxF, MF, AF, NLE (3), SI, K | RF | 85.1 | 86.0 | 85.6 | 85.5 | 89.6 |
2021 | Vahedian-Azimi et al. [32] | Own data [V] (748) | Recorder (44.1 kHz) | nr | F , J, Sh, HNR, NHR, AC, CPP, MFCC (nr), MPT, NVB, DVB | FNN | nr | 91.6 | 90.6 | 89.7 | nr |
2021 | Erdoğan and Narin [53] | Virufy [C] (1187) | nr (nr) | Normalization, Noise reduction | NLE (6) | SVM | 97.3 | 99.5 | 98.6 | 98.4 | nr |
2021 | Grant et al. [43] | Coswara [V] (1199) | nr (44.1 kHz) | Silence removal, Trimming, Normalization | MFCC (20×3), RASTA-PLP (20) | RF | nr | nr | nr | nr | 79.4 |
2021 | Irawati and Zakaria [69] | Coswara, Virufy [C] (150, 121) | nr (Cos.: 44.1 kHz, Vir.: 48 kHz) | Trimming | MFCC (20), SB, RMS, ZCR | GBF | nr | nr | Cos.: 87.0, Vir.: 82.0 | Cos.: 86.0, Vir.: 86.2 | nr |
2021 | Khan et al. [49] | Own data [C] (1579) | Stethoscope (8 kHz) | DC removal, Normalization, Trimming | HD (3) | k-NN, DT | k-NN: 97.8, DT: 92.0 | k-NN: 99.8, DT: 93.9 | nr | k-NN: 99.8, DT: 94.4 | nr |
2021 | Melek-Manshouri [70] | Virufy [C] | nr (nr) | Trimming | MFCC (13) | SVM | 91.7 | 98.6 | nr | 95.9 | nr |
2021 | Melek [71] | NoCoCoDa, Virufy [C] (59, 121) | nr (NoC.: 44.1 kHz, Vir.: 48 kHz) | Trimming | MFCC (19) | k-NN | nr | 97.2 | 98.0 | 98.3 | 98.6 |
2021 | Nessiem et al. [72] | Cambridge [C, B], (1035) | nr (16 kHz) | Re-sampling | LMS | CNN | 62.8 | 77.6 | nr | 67.7 | 77.6 |
2021 | Verde et al. [50] | Coswara [V] (166) | nr (nr) | Noise reduction | MFCC (nr), F , J, Sh, SC, SR | RF | 70.6 | 94.1 | 84.2 | 82.4 | 90.1 |
2021 | Banerjee and Nilhani [73] | Coswara, Coughvid [C] (233, 640) | nr (nr) | CAD, Trimming | LMS | CNN | 99.7 | 67.2 | 79.3 | 96.0 | nr |
2021 | Kamble et al. [39] | Coswara [C] (1253) | nr (44.1 kHz) | CAD | TECC (40×3) | GBF | 53.6 | 80.5 | nr | nr | 76.3 |
2021 | Maor et al. [74] | Own data [V] (434) | nr (nr) | Re-sampling | LMS | RF, SVM | 53.0 | 85.0 | nr | nr | 72.0 |
2021 | Pahar et al. [26] | Coswara, Sarcos [C] (1171, 44) | nr (44.1 kHz) | Silence removal, Normalization | MFCC (13), ZRC, K, LE | CNN, RNN | CNN: 98.0, RNN: 96.0 | CNN: 93.0, RNN: 91.0 | nr | CNN: 95.3, RNN: 92.9 | CNN: 97.6, RNN: 93.8 |
2021 | Vrindavanam et al. [75] | Freesound, Coswara, Cambridge [C] (150 total) | nr (44.1 kHz) | Re-sampling | MFCC (12), ZCR, F , RMS, CF, SB, PSD, SC, SR, LE, SP, LPCC, F (4) | SVM, RF | nr | SVM: 81.2, RF: 73.8 | SVM: 78.4, RF: 78.0 | SVM: 83.9, RF: 85.2 | nr |
2021 | Fakhry et al. [58] | Coughvid [C] (1880) | nr (44.1 kHz) | CAD, Re-sampling | MFCC (13), LMS | CNN + FNN | 99.2 | 85.0 | nr | nr | 91.0 |
2021 | Han et al. [76] | Own data [V] | Smartphone, Computer (nr) | Trimming, Re-sampling, Normalization | F , MFCC (12), RMS, HNR, ZCR | SVM | 82.0 | 68.0 | nr | nr | 79.0 |
2021 | Khriji et al. [54] | Audioset, ESC-50 [C, B] (nr) | nr (nr) | Noise reduction | PSD, FBC, MFCC (nr) | RNN | nr | 78.8 | 79.0 | 80.3 | nr |
2021 | Pal and Sankarasubbu [77] | Own data [C], (150) | nr (nr) | Re-sampling, Normalization, Trimming | MFCC (12), LE, EE, ZCR, Sk, F (4), F , K | FNN | 90.3 | 90.1 | 90.6 | 90.8 | nr |
2021 | Feng et al. [40] | Coswara, Virufy [C] (633, 25) | nr (nr) | Silence removal, CAD | MFCC (nr), E, EE, ZCR, SE, SC, SS, SF | RNN | nr | nr | nr | Cos.: 90.0, Vir.: 81.2 | Cos.: 92.8, Vir.: 79.0 |
2021 | Lella and Pja [78] | Cambridge [C, B, V] | Smartphone, Computer (16 kHz) | Trimming | MFCC (159×3) | CNN | nr | nr | 93.5 | 92.3 | nr |
2021 | Brown et al. [23] | Cambridge [C, B] (491) | Smartphone, Computer (nr) | Trimming, Re-sampling | MFCC (13×3), SC, RMS, SR, ZCR | SVM | nr | 72.0 | nr | nr | 82.0 |
2021 | Mouawad et al. [33] | CVD [C] (1927) | nr (22.05 kHz) | nr | s-RQA (nr) | GBF | nr | 65.0 | 62.0 | 97.0 | 84.0 |
2020 | Hassan et al. [28] | Own Data [C] | Microphone (nr) | Trimming | SC, SR, ZCR, MFCC (nr×3) | RNN | nr | 96.4 | 97.9 | 97.0 | 97.4 |
2020 | Chaudhari et al. [65] | Virufy, Coughvid, Coswara [C] (1442, 941, 105) | Smartphone (nr) | Re-sampling | MFCC (39), LMS | CNN | nr | nr | nr | nr | 77.1 |
2020 | Bansal et al. [79] | Audioset, ESC-50 [C] total) | nr (44.1 kHz) | Trimming | MFCC (40), SC, SR, ZCR | CNN | nr | 81.0 | 69.6 | 70.6 | nr |
4. Discussion
- Database creators should aim to collect diverse data, including a wide range of ages, genders, ethnicities, etc. These datasets need also be publicly available since combining several databases would allow researchers to have a larger data corpus and reduce the possible biases introduced by demographic factors.
- The pre-processing methods need to be automated and be as non-data-specific as possible. It is essential that researchers consider carefully whether re-sampling techniques improve computational speed enough to compensate for the information loss. An efficient CAD algorithm is critical since manual trimming and labeling become highly impractical when working with large datasets. Data augmentation should be avoided in favor of precise cough segmentation techniques and the creation of large datasets.
- The impact of each feature needs to be investigated individually, thus increasing the efficiency of manual feature extraction processes, allowing the adaptation of the neural network architectures, and improving the generalizability of the methods. Moreover, by fixing a subset of features that does not depend on the available dataset, researchers could design studies to test the performance of several machine learning and deep learning models as the only dependent variable.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Acronyms
AC | Autocorrelation | LPCC | Linear predictive coding coefficients | |
AF | Average frequency | LMS | Log-energy | |
BC | Binary classifier | MF | Mean frequency | |
BF | Butterworth filter | MFCC | Mel-frequency cepstral coefficients | |
BT | Bagged tree | MPT | Maximal phonation time | |
CF | Crest factor | MxF | Maximum frequency | |
CV | Chroma vector | NHR | Noise-to-harmonic ratio | |
CAD | Cough automatic detection | NLE | Non-linear entropies | |
CNN | Convolutional neural network | NLF | Non-linear features | |
CQT | Constant-Q transform | NMFC | Non-negative matrix factorization coefficients | |
CPP | Cepstral peak coefficients | NVB | Number of voice breaks | |
DCN | Dense convolutional network | O | Onset | |
DT | Decision tree | PCR | Polymerase chain reaction | |
DVB | Degree of voice breaks | PSD | Power spectrum density | |
E | Energy of the signal | RASTA-PLP | Relative spectra perceptual linear prediction | |
EE | Entropy of the energy | RF | Random forest | |
ET | Extremely randomized trees | RMS | Root mean square | |
EVR | Eigenvalue ratios | RNN | Recurrent neural network | |
FBC | Filter bank coefficients | SB | Spectral bandwidth | |
FNN | Feedforward neural network | SC | Spectral centroid | |
F | Fundamental frequency | SCn | Spectral contrast | |
F | Formant frequencies | SE | Spectral entropy | |
GBF | Gradient boosting framework | SI | Spectral information | |
GTCC | Gamma-tone cepstral coefficients | SF | Spectral flux | |
HD | Hjorth descriptors | Sh | Shimmer | |
HFD | Higuchi fractal dimension | Sk | Skewness | |
HNR | Harmonic-to-noise ratio | SP | Spectral flatness | |
HR | Harmonic ratio | SR | Spectral roll-off | |
J | Jitter | s-RQA | Symbolic recurrence quantification analysis | |
K | Kurtosis | SVM | Support vector machine | |
KFD | Katz fractal dimension | TC | Tonal centroid | |
k-NN | k-Nearest neighbors | TECC | Teager energy cepstral coefficients | |
LE | Log-energy | TFM | Time-frequency moment | |
LMS | Log-Mel spectrogram | ZCR | Zero crossing rate |
References
- World Health Organization (WHO). Naming the Coronavirus Disease (COVID-19) and the Virus That Causes It. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it (accessed on 22 March 2022).
- World Health Organization (WHO). COVID-19 Weekly Epidemiological Update. Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19—1-march-2022 (accessed on 22 March 2022).
- Mahmoudi, J.; Xiong, C. How social distancing, mobility, and preventive policies affect COVID-19 outcomes: Big data-driven evidence from the District of Columbia-Maryland-Virginia (DMV) megaregion. PLoS ONE 2022, 17, e0263820. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Zu, J.; Fairley, C.K.; Pagán, J.A.; An, L.; Du, Z.; Guo, Y.; Rong, L.; Xiao, Y.; Zhuang, G.; et al. Projected COVID-19 epidemic in the United States in the context of the effectiveness of a potential vaccine and implications for social distancing and face mask use. Vaccine 2021, 39, 2295–2302. [Google Scholar] [CrossRef] [PubMed]
- Kerr, C.C.; Mistry, D.; Stuart, R.M.; Rosenfeld, K.; Hart, G.R.; Núñez, R.C.; Cohen, J.A.; Selvaraj, P.; Abeysuriya, R.G.; Jastrzębski, M.; et al. Controlling COVID-19 via test-trace-quarantine. Nat. Commun. 2021, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kyosei, Y.; Yamura, S.; Namba, M.; Yoshimura, T.; Watabe, S.; Ito, E. Antigen tests for COVID-19. Biophys. Physicobiol. 2021, 18, 28–39. [Google Scholar] [CrossRef] [PubMed]
- Magnard, C.; Valette, M.; Aymard, M.; Lina, B. Comparison of two nested PCR, cell culture, and antigen detection for the diagnosis of upper respiratory tract infections due to influenza viruses. J. Med. Virol. 1999, 59, 215–220. [Google Scholar] [CrossRef]
- Drexler, J.F.; Helmer, A.; Kirberg, H.; Reber, U.; Panning, M.; Müller, M.; Höfling, K.; Matz, B.; Drosten, C.; Eis-Hübinger, A.M. Poor clinical sensitivity of rapid antigen test for influenza A pandemic (H1N1) 2009 virus. Emerg. Infect. Dis. 2009, 15, 1662. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Advice on the Use of Point-of-Care Immunodiagnostic Tests for COVID-19: Scientific Brief, 8 April 2020. Technical Report, World Health Organization. 2020. Available online: https://apps.who.int/iris/handle/10665/331713 (accessed on 1 March 2022).
- Harrison, A.G.; Lin, T.; Wang, P. Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends Immunol. 2020, 41, 1100–1115. [Google Scholar] [CrossRef]
- Zhang, Z. Mechanics of human voice production and control. J. Acoust. Soc. Am. 2016, 140, 2614–2635. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, R.T.; Lynch, J.B.; del Rio, C. Mild or moderate Covid-19. N. Engl. J. Med. 2020, 383, 1757–1766. [Google Scholar] [CrossRef]
- Matos, S.; Birring, S.; Pavord, I.; Evans, H. Detection of cough signals in continuous audio recordings using hidden Markov models. IEEE Trans. Biomed. Eng. 2006, 53, 1078–1083. [Google Scholar] [CrossRef]
- Shin, S.H.; Hashimoto, T.; Hatano, S. Automatic detection system for cough sounds as a symptom of abnormal health condition. IEEE Trans. Inf. Technol. Biomed. 2009, 13, 486–493. [Google Scholar] [CrossRef]
- Udugama, B.; Kadhiresan, P.; Kozlowski, H.N.; Malekjahani, A.; Osborne, M.; Li, V.Y.; Chen, H.; Mubareka, S.; Gubbay, J.B.; Chan, W.C. Diagnosing COVID-19: The disease and tools for detection. ACS Nano 2020, 14, 3822–3835. [Google Scholar] [CrossRef] [Green Version]
- Thompson, D.; Lei, Y. Mini review: Recent progress in RT-LAMP enabled COVID-19 detection. Sens. Actuators Rep. 2020, 2, 100017. [Google Scholar] [CrossRef]
- Serrurier, A.; Neuschaefer-Rube, C.; Röhrig, R. Past and trends in cough sound acquisition, automatic detection and automatic classification: A comparative review. Sensors 2022, 22, 2896. [Google Scholar] [CrossRef]
- Schuller, B.W.; Schuller, D.M.; Qian, K.; Liu, J.; Zheng, H.; Li, X. Covid-19 and computer audition: An overview on what speech & sound analysis could contribute in the SARS-CoV-2 corona crisis. Front. Digit. Health 2021, 3. [Google Scholar] [CrossRef]
- Ghrabli, S.; Elgendi, M.; Menon, C. Challenges and opportunities of deep learning for cough-based COVID-19 diagnosis: A scoping review. Diagnostics 2022, 12, 2142. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Orlandic, L.; Teijeiro, T.; Atienza, D. The COUGHVID crowdsourcing dataset, a corpus for the study of large-scale cough analysis algorithms. Sci. Data 2021, 8, 1–10. [Google Scholar] [CrossRef]
- Brown, C.; Chauhan, J.; Grammenos, A.; Han, J.; Hasthanasombat, A.; Spathis, D.; Xia, T.; Cicuta, P.; Mascolo, C. Exploring automatic diagnosis of COVID-19 from crowdsourced respiratory sound data. arXiv 2021, arXiv:2006.05919. [Google Scholar]
- Sharma, N.; Krishnan, P.; Kumar, R.; Ramoji, S.; Chetupalli, S.R.; Nirmala, R.; Ghosh, P.K.; Ganapathy, S. Coswara—A database of breathing, cough, and voice sounds for COVID-19 diagnosis. In Proceedings of the Interspeech 2020, ISCA, Shanghai, China, 25–29 October 2020. [Google Scholar] [CrossRef]
- Virufy. Virufy—About us. Available online: https://virufy.org/en/about/#about-us (accessed on 30 March 2022).
- Pahar, M.; Klopper, M.; Warren, R.; Niesler, T. COVID-19 cough classification using machine learning and global smartphone recordings. Comput. Biol. Med. 2021, 135, 104572. [Google Scholar] [CrossRef] [PubMed]
- Cohen-McFarlane, M.; Goubran, R.; Knoefel, F. Novel coronavirus cough database: NoCoCoDa. IEEE Access 2020, 8, 154087–154094. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.; Shahin, I.; Alsabek, M.B. COVID-19 detection system using recurrent neural networks. In Proceedings of the 2020 International Conference On Communications, Computing, Cybersecurity, and Informatics (CCCI), Sharjah, United Arab Emirates, 3–5 November 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Haritaoglu, E.D.; Rasmussen, N.; Xiao, J.; Chaudhari, G.; Rajput, A.; Govindan, P.; Yamaura, M.; Gomezjurado, L.; Khanzada, A.; Pilanci, M.; et al. Using deep learning with large aggregated datasets for COVID-19 classification from cough. arXiv 2022, arXiv:2201.01669. [Google Scholar]
- Verma, N.K.; Salour, A. Intelligent Condition Based Monitoring: For Turbines, Compressors, and Other Rotating Machines; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Tawfik, M.; Nimbhore, S.; Al-Zidi, N.M.; Ahmed, Z.A.; Almadani, A.M. Multi-features extraction for automating COVID-19 detection from cough sound using deep neural networks. In Proceedings of the 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 20–22 January 2022; pp. 944–950. [Google Scholar] [CrossRef]
- Vahedian-Azimi, A.; Keramatfar, A.; Asiaee, M.; Atashi, S.S.; Nourbakhsh, M. Do you have COVID-19? An artificial intelligence-based screening tool for COVID-19 using acoustic parameters. J. Acoust. Soc. Am. 2021, 150, 1945–1953. [Google Scholar] [CrossRef]
- Mouawad, P.; Dubnov, T.; Dubnov, S. Robust detection of COVID-19 in cough sounds. SN Comput. Sci. 2021, 2, 1–13. [Google Scholar] [CrossRef]
- Saha, S.; Bhadra, R.; Kar, S. An audio signal-based COVID-19 detection methodology using modified DenseNet121. In Proceedings of the 2021 IEEE 18th India Council International Conference (INDICON), Guwahati, India, 19–21 December 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Solak, F.Z. Identification of COVID-19 from cough Sounds using non-linear analysis and machine learning. Avrupa Bilim Teknol. Derg. 2021, 710–716. [Google Scholar] [CrossRef]
- Orlandic, L.; Teijeiro, T.; Atienza, D. Cough Segmentation Algorithm. Available online: https://c4science.ch/diffusion/10770/browse/master/src/ (accessed on 15 August 2022).
- Zhang, X.; Pettinati, M.; Jalali, A.; Rajput, K.S.; Selvaraj, N. Novel COVID-19 screening using cough recordings of a mobile patient monitoring system. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Virtual Conference, 31 October–4 November 2021; pp. 2353–2357. [Google Scholar] [CrossRef]
- Tena, A.; Clarià, F.; Solsona, F. Automated detection of COVID-19 cough. Biomed. Signal Process. Control 2021, 71, 103175. [Google Scholar] [CrossRef]
- Kamble, M.R.; Gonzalez-Lopez, J.A.; Grau, T.; Espin, J.M.; Cascioli, L.; Huang, Y.; Gomez-Alanis, A.; Patino, J.; Font, R.; Peinado, A.M.; et al. PANACEA cough sound-based diagnosis of COVID-19 for the DiCOVA 2021 Challenge. arXiv 2021, arXiv:2106.04423. [Google Scholar]
- Feng, K.; He, F.; Steinmann, J.; Demirkiran, I. Deep-learning based approach to identify COVID-19. In Proceedings of the SoutheastCon 2021, Atlanta, GA, USA, 10–13 March 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Pahar, M.; Klopper, M.; Warren, R.; Niesler, T. COVID-19 detection in cough, breath and speech using deep transfer learning and bottleneck features. Comput. Biol. Med. 2021, 141, 105153. [Google Scholar] [CrossRef]
- Milani, M.M.; Ramashini, M.; Krishani, M. Speech signal analysis of COVID-19 patients via machine learning approach. In Proceedings of the 2021 International Conference on Decision Aid Sciences and Application (DASA), Sakheer, Bahrain, 7–8 December 2021; pp. 314–319. [Google Scholar] [CrossRef]
- Grant, D.; McLane, I.; West, J. Rapid and scalable COVID-19 screening using speech, breath, and cough recordings. In Proceedings of the 2021 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI), Athens, Greece, 27–30 July 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Nellore, B.T.; Sreeram, G.; Dhawan, K.; Reddy, P.B. Evaluating speech production-based acoustic features for COVID-19 classification using cough signals. In Proceedings of the 2021 IEEE 18th India Council International Conference (INDICON), Guwahati, India, 19–21 December 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Sangle, S.; Gaikwad, C. COVID-19 detection using spectral and statistical features of cough and breath sounds. In Proceedings of the 2021 International Conference on Decision Aid Sciences and Application (DASA), Sakheer, Bahrain, 7–8 December 2021; pp. 182–186. [Google Scholar] [CrossRef]
- Rao, S.; Narayanaswamy, V.; Esposito, M.; Thiagarajan, J.; Spanias, A. Deep learning with hyper-parameter tuning for COVID-19 cough detection. In Proceedings of the 2021 12th International Conference on Information, Intelligence, Systems & Applications (IISA), Chania Crete, Greece, 12–14 July 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Gupta, R.; Krishna, T.A.; Adeeb, M. Cough sound based COVID-19 detection with stacked ensemble model. In Proceedings of the 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 20–22 January 2022; pp. 1391–1395. [Google Scholar] [CrossRef]
- AlHinai, N. Chapter 1—Introduction to biomedical signal processing and artificial intelligence. In Biomedical Signal Processing and Artificial Intelligence in Healthcare; Developments in Biomedical Engineering and Bioelectronics, Zgallai, W., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 1–28. [Google Scholar] [CrossRef]
- Khan, M.U.; Ali, S.; Habib, K.; Khan, H.; Tariq, F.; Bibi, S. A novel intelligent model for COVID-19 detection using cough auscultations and Hjorth descriptors. In Proceedings of the ICAME21, International Conference on Advances in Mechanical Engineering, Islamabad, Pakistan, 25 August 2021; pp. 1–10. [Google Scholar]
- Verde, L.; De Pietro, G.; Sannino, G. Artificial intelligence techniques for the non-invasive detection of COVID-19 through the analysis of voice signals. Arab. J. Sci. Eng. 2021, 1–11. [Google Scholar] [CrossRef]
- Meiniar, W.; Afrida, F.A.; Irmasari, A.; Mukti, A.; Astharini, D. Human voice filtering with band-stop filter design in MATLAB. In Proceedings of the 2017 International Conference on Broadband Communication, Wireless Sensors and Powering (BCWSP), Jakarta, Indonesia, 21–23 November 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Sanjeev, S.; Balne, C.C.S.; Reddy, T.J.; Reddy, G.P. Deep learning-based mixed data approach for COVID-19 detection. In Proceedings of the 2021 IEEE 18th India Council International Conference (INDICON), Guwahati, India, 19–21 December 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Erdoğan, Y.E.; Narin, A. COVID-19 detection with traditional and deep features on cough acoustic signals. Comput. Biol. Med. 2021, 136, 104765. [Google Scholar] [CrossRef]
- Khriji, L.; Ammari, A.; Messaoud, S.; Bouaafia, S.; Maraoui, A.; Machhout, M. COVID-19 recognition based on patient’s coughing and breathing patterns analysis: Deep learning approach. In Proceedings of the 2021 29th Conference of Open Innovations Association (FRUCT), Tampere, Finland, 12–14 May 2021; pp. 185–191. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, X.; Wang, W.; Huang, Z.; Zhang, P.; Yan, Y. Cough-based COVID-19 detection with multi-band long-short term memory and convolutional neural networks. In Proceedings of the 2nd International Symposium on Artificial Intelligence for Medicine Sciences, Beijing, China, 29–31 October 2021; pp. 209–215. [Google Scholar] [CrossRef]
- Islam, R.; Abdel-Raheem, E.; Tarique, M. A study of using cough sounds and deep neural networks for the early detection of COVID-19. Biomed. Eng. Adv. 2022, 100025. [Google Scholar] [CrossRef]
- Alkhodari, M.; Khandoker, A.H. Detection of COVID-19 in smartphone-based breathing recordings: A pre-screening deep learning tool. PLoS ONE 2022, 17, e0262448. [Google Scholar] [CrossRef]
- Fakhry, A.; Jiang, X.; Xiao, J.; Chaudhari, G.; Han, A.; Khanzada, A. Virufy: A multi-branch deep learning network for automated detection of COVID-19. arXiv 2021, arXiv:2103.01806. [Google Scholar]
- Son, M.J.; Lee, S.P. COVID-19 diagnosis from crowdsourced cough sound data. Appl. Sci. 2022, 12, 1795. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar] [CrossRef]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, N.K.; Kabir, M.A.; Rahman, M. An Ensemble-based Multi-Criteria Decision Making Method for COVID-19 Cough Classification. arXiv 2021, arXiv:2110.00508. [Google Scholar]
- Pancaldi, F.; Pezzuto, G.S.; Cassone, G.; Morelli, M.; Manfredi, A.; D’Arienzo, M.; Vacchi, C.; Savorani, F.; Vinci, G.; Barsotti, F.; et al. VECTOR: An algorithm for the detection of COVID-19 pneumonia from velcro-like lung sounds. Comput. Biol. Med. 2022, 105220. [Google Scholar] [CrossRef]
- Kamble, M.R.; Patino, J.; Zuluaga, M.A.; Todisco, M. Exploring auditory acoustic features for the diagnosis of the COVID-19. arXiv 2022, arXiv:2201.09110. [Google Scholar]
- Chaudhari, G.; Jiang, X.; Fakhry, A.; Han, A.; Xiao, J.; Shen, S.; Khanzada, A. Virufy: Global applicability of crowdsourced and clinical datasets for AI detection of COVID-19 from cough. arXiv 2020, arXiv:2011.13320. [Google Scholar]
- Rahman, D.A.; Lestari, D.P. COVID-19 classification using cough sounds. In Proceedings of the 2021 8th International Conference on Advanced Informatics: Concepts, Theory and Applications (ICAICTA), Bandung, Indonesia, 29–30 September 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Shkanov, B.; Zolotova, A.; Alexandrov, M.; Koshulko, O. Express diagnosis of COVID-19 on cough audiograms with machine learning algorithms from Scikit-learn library and GMDH Shell tool. In Proceedings of the 2021 IEEE 16th International Conference on Computer Sciences and Information Technologies (CSIT), Lviv, Ukraine, 22–25 September 2021; pp. 410–414. [Google Scholar] [CrossRef]
- Wang, J.; Chen, P.; Zhang, C.; Kang, Y. Corona virus disease 2019 respiratory cycle detection based on convolutional neural network. In Proceedings of the 2021 IEEE Biomedical Circuits and Systems Conference (BioCAS), Berlin, Germany, 7–9 October 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Irawati, M.E.; Zakaria, H. Classification model for COVID-19 detection through recording of cough using XGboost classifier algorithm. In Proceedings of the 2021 International Symposium on Electronics and Smart Devices (ISESD), Bandung, Indonesia, 29–30 June 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Melek Manshouri, N. Identifying COVID-19 by using spectral analysis of cough recordings: A distinctive classification study. Cogn. Neurodynamics 2021, 16, 239–253. [Google Scholar] [CrossRef]
- Melek, M. Diagnosis of COVID-19 and non-COVID-19 patients by classifying only a single cough sound. Neural Comput. Appl. 2021, 33, 17621–17632. [Google Scholar] [CrossRef]
- Nessiem, M.A.; Mohamed, M.M.; Coppock, H.; Gaskell, A.; Schuller, B.W. Detecting COVID-19 from breathing and coughing sounds using deep neural networks. In Proceedings of the 2021 IEEE 34th International Symposium on Computer-Based Medical Systems (CBMS), Aveiro, Portugal, 7–9 June 2021; pp. 183–188. [Google Scholar] [CrossRef]
- Banerjee, A.; Nilhani, A. A residual network based deep learning model for detection of COVID-19 from cough sounds. arXiv 2021, arXiv:2106.02348. [Google Scholar]
- Maor, E.; Tsur, N.; Barkai, G.; Meister, I.; Makmel, S.; Friedman, E.; Aronovich, D.; Mevorach, D.; Lerman, A.; Zimlichman, E.; et al. Noninvasive vocal biomarker is associated with severe acute respiratory syndrome coronavirus 2 infection. Mayo Clin. Proc. Innov. Qual. Outcomes 2021, 5, 654–662. [Google Scholar] [CrossRef] [PubMed]
- Vrindavanam, J.; Srinath, R.; Shankar, H.H.; Nagesh, G. Machine learning based COVID-19 cough classification Models-A comparative analysis. In Proceedings of the 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 8–10 April 2021; pp. 420–426. [Google Scholar] [CrossRef]
- Han, J.; Brown, C.; Chauhan, J.; Grammenos, A.; Hasthanasombat, A.; Spathis, D.; Xia, T.; Cicuta, P.; Mascolo, C. Exploring automatic COVID-19 diagnosis via voice and symptoms from crowdsourced data. In Proceedings of the ICASSP 2021—2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 8328–8332. [Google Scholar] [CrossRef]
- Pal, A.; Sankarasubbu, M. Pay attention to the cough: Early diagnosis of COVID-19 using interpretable symptoms embeddings with cough sound signal processing. In Proceedings of the 36th Annual ACM Symposium on Applied Computing, Virtual Conference, 22–26 March 2021; pp. 620–628. [Google Scholar] [CrossRef]
- Lella, K.K.; Pja, A. Automatic COVID-19 disease diagnosis using 1D convolutional neural network and augmentation with human respiratory sound based on parameters: Cough, breath, and voice. AIMS Public Health 2021, 8, 240. [Google Scholar] [CrossRef] [PubMed]
- Bansal, V.; Pahwa, G.; Kannan, N. Cough classification for COVID-19 based on audio MFCC features using convolutional neural networks. In Proceedings of the 2020 IEEE International Conference on Computing, Power and Communication Technologies (GUCON), Greater Noida, India, 2–4 October 2020; pp. 604–608. [Google Scholar] [CrossRef]
- Lortie, C.L.; Thibeault, M.; Guitton, M.J.; Tremblay, P. Effects of age on the amplitude, frequency and perceived quality of voice. Age 2015, 37, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salamon, J.; Bello, J.P. Deep convolutional neural networks and data augmentation for environmental sound classification. IEEE Signal Process. Lett. 2017, 24, 279–283. [Google Scholar] [CrossRef]
- Aquino, N.R.; Gutoski, M.; Hattori, L.T.; Lopes, H.S. The effect of data augmentation on the performance of Convolutional Neural Networks. Braz. Soc. Comput. Intell. 2017. [Google Scholar] [CrossRef] [Green Version]
- O’Shaughnessy, D. Speech Communication: Human and Machine; Wiley-IEEE Press: Hoboken, NJ, USA, 1999; ISBN 978-0-780-33449-6. [Google Scholar]
- Merhav, N.; Lee, C.H. On the asymptotic statistical behavior of empirical cepstral coefficients. IEEE Trans. Signal Process. 1993, 41, 1990–1993. [Google Scholar] [CrossRef] [Green Version]
- Logan, B. Mel frequency cepstral coefficients for music modeling. In Proceedings of the International Symposium on Music Information Retrieval, Plymouth, MA, USA, 23–25 October 2000. [Google Scholar]
- Korpáš, J.; Sadloňová, J.; Vrabec, M. Analysis of the cough sound: An overview. Pulm. Pharmacol. 1996, 9, 261–268. [Google Scholar] [CrossRef]
- Wei, Q.; Dunbrack, R.L., Jr. The role of balanced training and testing data sets for binary classifiers in bioinformatics. PLoS ONE 2013, 8, e67863. [Google Scholar] [CrossRef] [Green Version]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aleixandre, J.G.; Elgendi, M.; Menon, C. The Use of Audio Signals for Detecting COVID-19: A Systematic Review. Sensors 2022, 22, 8114. https://doi.org/10.3390/s22218114
Aleixandre JG, Elgendi M, Menon C. The Use of Audio Signals for Detecting COVID-19: A Systematic Review. Sensors. 2022; 22(21):8114. https://doi.org/10.3390/s22218114
Chicago/Turabian StyleAleixandre, José Gómez, Mohamed Elgendi, and Carlo Menon. 2022. "The Use of Audio Signals for Detecting COVID-19: A Systematic Review" Sensors 22, no. 21: 8114. https://doi.org/10.3390/s22218114
APA StyleAleixandre, J. G., Elgendi, M., & Menon, C. (2022). The Use of Audio Signals for Detecting COVID-19: A Systematic Review. Sensors, 22(21), 8114. https://doi.org/10.3390/s22218114