Wavelet Mutation with Aquila Optimization-Based Routing Protocol for Energy-Aware Wireless Communication
Abstract
:1. Introduction
2. Literature Review
3. The Proposed Model
3.1. System Model
3.1.1. Energy Model
3.1.2. Energy-Dissipation Model
3.1.3. Network Model
3.2. Design of WMAO Algorithm
Algorithm 1: Aquila optimizer (AO) |
while (The ending criteria are not satisfied) do do based on Equation (7). then then End if End if based on Equation (9) then then End if End if Else based on Equation (13). then then end if end if based on Equation (14). then then end if end if End if end for End while . |
3.3. Process Involved in the WMAO-EAR Technique
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohan, P.; Subramani, N.; Alotaibi, Y.; Alghamdi, S.; Khalaf, O.I.; Ulaganathan, S. Improved metaheuristics-based clustering with multihop routing protocol for underwater wireless sensor networks. Sensors 2022, 22, 1618. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Mishra, P.K. A survey on WSN issues with its heuristics and meta-heuristics solutions. Wirel. Pers. Commun. 2021, 121, 745–814. [Google Scholar] [CrossRef]
- Sharma, R.; Vashisht, V.; Singh, U. Metaheuristics-based energy efficient clustering in WSNs: Challenges and research contributions. IET Wirel. Sens. Syst. 2020, 10, 253–264. [Google Scholar] [CrossRef]
- Yadav, R.K.; Mahapatra, R.P. Hybrid metaheuristic algorithm for optimal cluster head selection in wireless sensor network. Pervasive Mob. Comput. 2022, 79, 101504. [Google Scholar] [CrossRef]
- Revanesh, M.; Sridhar, V. A trusted distributed routing scheme for wireless sensor networks using blockchain and meta-heuristics-based deep learning technique. Trans. Emerg. Telecommun. Technol. 2021, 32, e4259. [Google Scholar] [CrossRef]
- Wang, H.; Li, K.; Pedrycz, W. An elite hybrid metaheuristic optimization algorithm for maximizing wireless sensor networks lifetime with a sink node. IEEE Sens. J. 2020, 20, 5634–5649. [Google Scholar] [CrossRef]
- Esmaeili, H.; Bidgoli, B.M.; Hakami, V. CMML: Combined metaheuristic-machine learning for adaptable routing in clustered wireless sensor networks. Appl. Soft Comput. 2022, 118, 108477. [Google Scholar] [CrossRef]
- Du, X.; Wang, T.; Wang, L.; Pan, W.; Chai, C.; Xu, X.; Jiang, B.; Wang, J. CoreBug: Improving effort-aware bug prediction in software systems using generalized k-core decomposition in class dependency networks. Axioms 2022, 11, 205. [Google Scholar] [CrossRef]
- Singh, S.; Nandan, A.S.; Malik, A.; Kumar, N.; Barnawi, A. An energy-efficient modified metaheuristic inspired algorithm for disaster management system using WSNs. IEEE Sens. J. 2021, 21, 15398–15408. [Google Scholar] [CrossRef]
- Moharamkhani, E.; Zadmehr, B.; Memarian, S.; Saber, M.J.; Shokouhifar, M. Multiobjective fuzzy knowledge-based bacterial foraging optimization for congestion control in clustered wireless sensor networks. Int. J. Commun. Syst. 2021, 34, e4949. [Google Scholar] [CrossRef]
- Jagadeesh, S.; Muthulakshmi, I. Hybrid Metaheuristic Algorithm-Based Clustering with Multi-Hop Routing Protocol for Wireless Sensor Networks. In Proceedings of Data Analytics and Management; Springer: Singapore, 2022; pp. 843–855. [Google Scholar]
- Gupta, G.P.; Saha, B. Load balanced clustering scheme using hybrid metaheuristic technique for mobile sink based wireless sensor networks. J. Ambient. Intell. Humaniz. Comput. 2020, 1–12. [Google Scholar] [CrossRef]
- Al-Otaibi, S.; Al-Rasheed, A.; Mansour, R.F.; Yang, E.; Joshi, G.P.; Cho, W. Hybridization of metaheuristic algorithm for dynamic cluster-based routing protocol in wireless sensor Networksx. IEEE Access 2021, 9, 83751–83761. [Google Scholar] [CrossRef]
- Subramani, N.; Mohan, P.; Alotaibi, Y.; Alghamdi, S.; Khalaf, O.I. An efficient metaheuristic-based clustering with routing protocol for underwater wireless sensor networks. Sensors 2022, 22, 415. [Google Scholar] [CrossRef] [PubMed]
- Lakshmanna, K.; Subramani, N.; Alotaibi, Y.; Alghamdi, S.; Khalafand, O.I.; Nanda, A.K. Improved metaheuristic-driven energy-aware cluster-based routing scheme for IoT-assisted wireless sensor networks. Sustainability 2022, 14, 7712. [Google Scholar] [CrossRef]
- Srikanth, V.; Vanitha, M.; Maragatharajan, M.; Marappan, P.; Jegajothi, B. Metaheuristic Optimization Enabled Unequal Clustering with Routing Technique. In Proceedings of the 2022 International Conference on Electronics and Renewable Systems (ICEARS), Tuticorin, India, 16–18 March 2022; pp. 800–806. [Google Scholar]
- Mann, P.S.; Singh, S. Improved metaheuristic-based energy-efficient clustering protocol with optimal base station location in wireless sensor networks. Soft Comput. 2019, 23, 1021–1037. [Google Scholar] [CrossRef]
- Sheikhpour, R.; Jabbehdari, S.; Khadem-Zadeh, A. Comparison of energy efficient clustering protocols in heterogeneous wireless sensor networks. Int. J. Adv. Sci. Technol. 2011, 36, 27–40. [Google Scholar]
- Abualigah, L.; Yousri, D.; Abd Elaziz, M.; Ewees, A.A.; Al-Qaness, M.A.; Gandomi, A.H. Aquila optimizer: A novel meta-heuristic optimization algorithm. Comput. Ind. Eng. 2021, 157, 107250. [Google Scholar] [CrossRef]
- Hu, G.; Du, B.; Li, H.; Wang, X. Quadratic interpolation boosted black widow spider-inspired optimization algorithm with wavelet mutation. Math. Comput. Simul. 2022, 200, 428–467. [Google Scholar] [CrossRef]
- Mukherjee, V.; Mukherjee, A.; Prasad, D. Whale optimization algorithm with wavelet mutation for the solution of optimal power flow problem. In Handbook of Research on Predictive Modeling and Optimization Methods in Science and Engineering; IGI Global: Hershey, PA, USA, 2018; pp. 500–553. [Google Scholar]
- Ma, L.; Li, J.; Zhao, Y. Population Forecast of China’s Rural Community Based on CFANGBM and Improved Aquila Optimizer Algorithm. Fractal Fract. 2021, 5, 190. [Google Scholar] [CrossRef]
- Roy, S.; Mazumdar, N.; Pamula, R. An energy optimized and QoS concerned data gathering protocol for wireless sensor network using variable dimensional PSO. Ad Hoc Netw. 2021, 123, 102669. [Google Scholar] [CrossRef]
- Han, B.; Ran, F.; Li, J.; Yan, L.; Shen, H.; Li, A. A Novel Adaptive Cluster Based Routing Protocol for Energy-Harvesting Wireless Sensor Networks. Sensors 2022, 22, 1564. [Google Scholar] [CrossRef] [PubMed]
Time Steps (Rounds) | ||||||
---|---|---|---|---|---|---|
Dead Nodes | LEACH | CE-EC | SEED | NEH-CP | HCEHUC | WMAO-EAR |
Nodes = 100 | ||||||
First Node Dead | 466 | 1000 | 990 | 780 | 2563 | 1500 |
Half Node Dead | 531 | 4328 | 3269 | 2251 | 4525 | 4750 |
Last Node Dead | 575 | 5230 | 5072 | 4500 | 5140 | 5432 |
Nodes = 300 | ||||||
First Node Dead | 528 | 1091 | 1610 | 1814 | 2651 | 2786 |
Half Node Dead | 616 | 2088 | 3566 | 4221 | 4562 | 4647 |
Last Node Dead | 715 | 2736 | 4327 | 5017 | 5217 | 5387 |
Time Steps (Rounds) | ||||||
---|---|---|---|---|---|---|
Initial Energy (J) | LEACH | CE-EC | SEED | NEH-CP | HCEHUC | WMAO-EAR |
Nodes = 100 | ||||||
0.25 | 340 | 1436 | 2067 | 2445 | 2649 | 2722 |
0.5 | 702 | 2748 | 4287 | 4985 | 5211 | 5213 |
0.75 | 765 | 4136 | 5240 | 6101 | 7788 | 7862 |
1 | 1166 | 4825 | 7499 | 8211 | 10362 | 10411 |
Nodes = 300 | ||||||
0.25 | 558 | 1656 | 2161 | 2676 | 2661 | 2837 |
0.5 | 846 | 2815 | 4390 | 4997 | 5259 | 5423 |
0.75 | 966 | 4261 | 5439 | 6192 | 7804 | 8082 |
1 | 1249 | 5138 | 7570 | 8415 | 10376 | 10585 |
Alive Nodes | |||||
---|---|---|---|---|---|
Rounds | WMAO-EAR | CE-EC | SEED | NEH-CP | HCEHUC |
Nodes = 100 | |||||
0 | 100 | 100 | 100 | 100 | 100 |
500 | 100 | 100 | 100 | 100 | 99 |
1000 | 100 | 100 | 100 | 98 | 99 |
1500 | 99 | 99 | 98 | 94 | 89 |
2000 | 99 | 98 | 93 | 79 | 56 |
2500 | 98 | 97 | 78 | 46 | 19 |
3000 | 95 | 92 | 59 | 29 | 0 |
3500 | 89 | 85 | 37 | 15 | 0 |
4000 | 76 | 72 | 25 | 6 | 0 |
4500 | 52 | 47 | 10 | 0 | 0 |
5000 | 24 | 20 | 2 | 0 | 0 |
5500 | 0 | 0 | 0 | 0 | 0 |
Nodes = 300 | |||||
0 | 300 | 300 | 300 | 300 | 300 |
500 | 300 | 300 | 300 | 297 | 295 |
1000 | 300 | 300 | 300 | 298 | 293 |
1500 | 300 | 298 | 286 | 288 | 258 |
2000 | 300 | 295 | 277 | 257 | 216 |
2500 | 298 | 282 | 256 | 203 | 142 |
3000 | 281 | 259 | 240 | 142 | 69 |
3500 | 266 | 227 | 215 | 92 | 30 |
4000 | 224 | 160 | 114 | 46 | 11 |
4500 | 171 | 108 | 57 | 14 | 0 |
5000 | 115 | 45 | 29 | 0 | 0 |
5500 | 0 | 0 | 0 | 0 | 0 |
Dead Nodes | |||||
---|---|---|---|---|---|
Rounds | WMAO-EAR | HCEHUC | NEH-CP | SEED | CE-EC |
Nodes = 100 | |||||
0 | 0 | 0 | 0 | 0 | 0 |
500 | 0 | 0 | 0 | 0 | 1 |
1000 | 0 | 0 | 0 | 2 | 1 |
1500 | 1 | 1 | 2 | 6 | 11 |
2000 | 1 | 2 | 7 | 21 | 44 |
2500 | 2 | 3 | 22 | 54 | 81 |
3000 | 5 | 8 | 41 | 71 | 100 |
3500 | 11 | 15 | 63 | 85 | 100 |
4000 | 24 | 28 | 75 | 94 | 100 |
4500 | 48 | 53 | 90 | 100 | 100 |
5000 | 76 | 80 | 98 | 100 | 100 |
5500 | 100 | 100 | 100 | 100 | 100 |
Nodes = 300 | |||||
0 | 0 | 0 | 0 | 0 | 0 |
500 | 0 | 0 | 0 | 3 | 5 |
1000 | 0 | 0 | 0 | 2 | 7 |
1500 | 0 | 2 | 14 | 12 | 42 |
2000 | 0 | 5 | 23 | 43 | 84 |
2500 | 2 | 18 | 44 | 97 | 158 |
3000 | 19 | 41 | 60 | 158 | 231 |
3500 | 34 | 73 | 85 | 208 | 270 |
4000 | 76 | 140 | 186 | 254 | 289 |
4500 | 129 | 192 | 243 | 286 | 300 |
5000 | 185 | 255 | 271 | 300 | 300 |
5500 | 300 | 300 | 300 | 300 | 300 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alangari, S.; Obayya, M.; Gaddah, A.; Yafoz, A.; Alsini, R.; Alghushairy, O.; Ashour, A.; Motwakel, A. Wavelet Mutation with Aquila Optimization-Based Routing Protocol for Energy-Aware Wireless Communication. Sensors 2022, 22, 8508. https://doi.org/10.3390/s22218508
Alangari S, Obayya M, Gaddah A, Yafoz A, Alsini R, Alghushairy O, Ashour A, Motwakel A. Wavelet Mutation with Aquila Optimization-Based Routing Protocol for Energy-Aware Wireless Communication. Sensors. 2022; 22(21):8508. https://doi.org/10.3390/s22218508
Chicago/Turabian StyleAlangari, Someah, Marwa Obayya, Abdulbaset Gaddah, Ayman Yafoz, Raed Alsini, Omar Alghushairy, Ahmed Ashour, and Abdelwahed Motwakel. 2022. "Wavelet Mutation with Aquila Optimization-Based Routing Protocol for Energy-Aware Wireless Communication" Sensors 22, no. 21: 8508. https://doi.org/10.3390/s22218508
APA StyleAlangari, S., Obayya, M., Gaddah, A., Yafoz, A., Alsini, R., Alghushairy, O., Ashour, A., & Motwakel, A. (2022). Wavelet Mutation with Aquila Optimization-Based Routing Protocol for Energy-Aware Wireless Communication. Sensors, 22(21), 8508. https://doi.org/10.3390/s22218508