Multiple Damage Detection in PZT Sensor Using Dual Point Contact Method
Abstract
:1. Introduction
2. Experimental Setup
3. Methodology
3.1. Power Spectral Density Analysis of the Signal
3.2. De-Noising by Wavelet Transformation (DWT) of the Signal
- ,
- ,
- ,
- .
4. Procedure
4.1. Power Spectral Analysis on Received Signal
4.2. Haar Wavelet Analysis on Received Signal
5. Experimental Observation
5.1. Power Spectral Density Analysis
5.2. Discrete Wavelet Transformation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rathod, V.; Mahapatra, D.R. Ultrasonic Lamb wave based monitoring of corrosion type of damage in plate using a circular array of piezoelectric transducers. NDT E Int. 2011, 44, 628–636. [Google Scholar] [CrossRef]
- Mei, H.; Giurgiutiu, V. Guided wave excitation and propagation in damped composite plates. Struct. Health Monit. 2018, 18, 690–714. [Google Scholar] [CrossRef]
- Su, L.; Zou, L.; Fong, C.-C.; Wong, W.-L.; Wei, F.; Wong, K.-Y.; Wu, R.S.; Yang, M. Detection of cancer biomarkers by piezoelectric biosensor using PZT ceramic resonator as the transducer. Biosens. Bioelectron. 2013, 46, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Quek, S.T.; Tua, P.; Jin, J. Comparison of Plain Piezoceramics and Inter-digital Transducer for Crack Detection in Plates. J. Intell. Mater. Syst. Struct. 2007, 18, 949–961. [Google Scholar] [CrossRef]
- Farrar, C.R.; Worden, K. An introduction to structural health monitoring. Philos. Trans. R. Soc. A 2007, 365, 303–315. [Google Scholar] [CrossRef]
- Boller, C.; Biemans, C.; Staszewski, W.J.; Worden, K.; Tomlinson, G.R. Structural damage monitoring based on an actuator-sensor system. In Smart Structures and Materials 1999: Smart Structures and Integrated Systems; International Society for Optics and Photonics: Bellingham, WA, USA, 1999; Volume 3668, pp. 285–295. [Google Scholar]
- Todd, M.; Nichols, J.; Pecora, L.; Virgin, L. Vibration-based damage assessment utilizing state space geometry changes: Local attractor variance ratio. Smart Mater. Struct. 2001, 10, 1000. [Google Scholar] [CrossRef]
- Ihn, J.-B.; Chang, F.-K. Pitch-catch Active Sensing Methods in Structural Health Monitoring for Aircraft Structures. Struct. Health Monit. 2008, 7, 5–19. [Google Scholar] [CrossRef]
- Kazys, R.J.; Sliteris, R.; Sestoke, J. Air-coupled low frequency ultrasonic transducers and arrays with PMN-32% PT piezoelectric crystals. Sensors 2017, 17, 95. [Google Scholar] [CrossRef]
- Fan, Z.; Jiang, W.; Wright, W.M. Non-contact ultrasonic gas flow metering using air-coupled leaky Lamb waves. Ultrasonics 2018, 89, 74–83. [Google Scholar] [CrossRef]
- Komanduri, R.; Lange, J.; Wicksted, J.P.; Krasinski, J.S. Advanced Polishing/Finishing and NDE Procedures. ARPA Ceram. Bear. Technol. Annu. Rev. 1994, 16, 10–14. [Google Scholar]
- Bashkansky, M.; Duncan, M.D.; Kahn, M.; Iii, D.L.; Reintjes, J. Subsurface defect detection in ceramics by high-speed high-resolution optical coherent tomography. Opt. Lett. 1997, 22, 61–63. [Google Scholar] [CrossRef] [PubMed]
- Battle, P.R.; Bashkansky, M.; Mahon, R.; Reintjes, J.F. Subsurface Defect Detection in Ceramic Materials Using Optical Gating Techniques; Thompson, D.O., Chimenti, D.E., Eds.; Springer: Boston, MA, USA, 1996; Volume 35, pp. 1119–1124. [Google Scholar]
- Michaels, T.E.; Michaels, J.E.; Ruzzene, M. Frequency–wavenumber domain analysis of guided wavefields. Ultrasonics 2011, 51, 452–466. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Yu, L. Lamb wave frequency–wavenumber analysis and decomposition. J. Intell. Mater. Syst. Struct. 2014, 25, 1107–1123. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Huang, N.E.; Wu, M.-L.C.; Long, S.R.; Shen, S.S.; Qu, W.; Gloersen, P.; Fan, K.L. A confidence limit for the empirical mode decomposition and Hilbert spectral analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2003, 459, 2317–2345. [Google Scholar] [CrossRef]
- Wall, M.E.; Rechtsteiner, A.; Rocha, L.M. Singular value decomposition and principal component analysis. In A Practical Approach to Microarray Data Analysis; Springer: Berlin/Heidelberg, Germany, 2003; pp. 91–109. [Google Scholar]
- Shlens, J. A Tutorial on Principal Component Analysis: Derivation, Discussion and Singular Value Decomposition. 2003. Available online: https://www.semanticscholar.org/paper/A-TUTORIAL-ON-PRINCIPAL-COMPONENT-ANALYSIS-%2C-and-Shlens/bde7bb9b7478a23133c4731e6948a2ee123a0991#citing-papers (accessed on 11 September 2022).
- Jeen-Shang, L.; Yigong, Z. Nonlinear structural identification using extended kalman filter. Comput. Struct. 1994, 52, 757–764. [Google Scholar] [CrossRef]
- Sohn, H.; Farrar, C.R. Damage diagnosis using time series analysis of vibration signals. Smart Mater. Struct. 2001, 10, 446. [Google Scholar] [CrossRef] [Green Version]
- Bodeux, J.-B.; Golinval, J.-C. Application of ARMAV models to the identification and damage detection of mechanical and civil engineering structures. Smart Mater. Struct. 2001, 10, 479–489. [Google Scholar] [CrossRef]
- Sohn, H.; Czarnecki, J.A.; Farrar, C.R. Structural health monitoring using statistical process control. J. Struct. Eng. 2000, 126, 1356–1363. [Google Scholar] [CrossRef]
- Sohn, H.; Farrar, C.R.; Hunter, N.F.; Worden, K. Structural health monitoring using statistical pattern recognition techniques. J. Dyn. Syst. Meas. Control 2001, 123, 706–711. [Google Scholar] [CrossRef] [Green Version]
- Yao, R.; Pakzad, S.N. Autoregressive statistical pattern recognition algorithms for damage detection in civil structures. Mech. Syst. Signal Process. 2012, 31, 355–368. [Google Scholar] [CrossRef]
- Worden, K.; Farrar, C.R.; Haywood, J.; Todd, M. A review of nonlinear dynamics applications to structural health monitoring. Struct. Control Health. Monit. 2008, 15, 540–567. [Google Scholar] [CrossRef]
- Habib, A.; Twerdowski, E.; von Buttlar, M.; Pluta, M.; Schmachtl, M.; Wannemacher, R.; Grill, W. Acoustic holography of piezoelectric materials by Coulomb excitation. In Health Monitoring and Smart Nondestructive Evaluation of Structural and Biological Systems V; International Society for Optics and Photonics: Bellingham, WA, USA, 2006; Volume 6177, p. 61771A. [Google Scholar]
- Habib, A.; Twerdowski, E.; von Buttlar, M.; Wannemacher, R.; Grill, W. The influence of the radius of the electrodes employed in Coulomb excitation of acoustic waves in piezoelectric materials. In Health Monitoring of Structural and Biological Systems; International Society for Optics and Photonics: Bellingham, WA, USA, 2007; Volume 6532, p. 653214. [Google Scholar]
- Habib, A.; Shelke, A.; Pluta, M.; Kundu, T.; Pietsch, U.; Grill, W. Imaging of acoustic waves in piezoelectric ceramics by Coulomb coupling. Jpn. J. Appl. Phys. 2012, 51, 07GB05. [Google Scholar] [CrossRef]
- Habib, A.; Shelke, A.; Pietsch, U.; Kundu, T.; Grill, W. Determination of the transport properties of ultrasonic waves traveling in piezoelectric crystals by imaging with Coulomb coupling. In Health Monitoring of Structural and Biological Systems; International Society for Optics and Photonics: Bellingham, WA, USA, 2012; Volume 8348, p. 834816. [Google Scholar]
- Habib, A.; Amjad, U.; Pluta, M.; Pietsch, U.; Grill, W. Surface acoustic wave generation and detection by Coulomb excitation. In Health Monitoring of Structural and Biological Systems; International Society for Optics and Photonics: Bellingham, WA, USA, 2010; Volume 7650, p. 76501T. [Google Scholar]
- Shelke, A.; Habib, A.; Amjad, U.; Pluta, M.; Kundu, T.; Pietsch, U.; Grill, W. Metamorphosis of bulk waves to Lamb waves in anisotropic piezoelectric crystals. In Health Monitoring of Structural and Biological Systems; International Society for Optics and Photonics: Bellingham, WA, USA, 2011; Volume 7984, p. 798415. [Google Scholar]
- Habib, A.; Shelke, A.; Pluta, M.; Pietsch, U.; Kundu, T.; Grill, W. Scattering and attenuation of surface acoustic waves and surface skimming longitudinal polarized bulk waves imaged by Coulomb coupling. AIP Conf. Proc. 2012, 1433, 247–250. [Google Scholar]
- Singh, H.; Ahmed, A.S.; Melandsø, F.; Habib, A. Ultrasonic image denoising using machine learning in point contact excitation and detection method. Ultrasonics 2023, 127, 106834. [Google Scholar] [CrossRef]
- Kalimullah, N.M.; Shelke, A.; Habib, A. Multiresolution Dynamic Mode Decomposition (mrDMD) of Elastic Waves for Damage Localisation in Piezoelectric Ceramic. IEEE Access 2021, 9, 120512–120524. [Google Scholar] [CrossRef]
- Agarwal, V.; Shelke, A.; Ahluwalia, B.S.; Melandsø, F.; Kundu, T.; Habib, A. Damage localization in piezo-ceramic using ultrasonic waves excited by dual point contact excitation and detection scheme. Ultrasonics 2020, 108, 106113. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhattacharya, S.; Yadav, N.; Ahmad, A.; Melandsø, F.; Habib, A. Multiple Damage Detection in PZT Sensor Using Dual Point Contact Method. Sensors 2022, 22, 9161. https://doi.org/10.3390/s22239161
Bhattacharya S, Yadav N, Ahmad A, Melandsø F, Habib A. Multiple Damage Detection in PZT Sensor Using Dual Point Contact Method. Sensors. 2022; 22(23):9161. https://doi.org/10.3390/s22239161
Chicago/Turabian StyleBhattacharya, Sayantani, Nitin Yadav, Azeem Ahmad, Frank Melandsø, and Anowarul Habib. 2022. "Multiple Damage Detection in PZT Sensor Using Dual Point Contact Method" Sensors 22, no. 23: 9161. https://doi.org/10.3390/s22239161
APA StyleBhattacharya, S., Yadav, N., Ahmad, A., Melandsø, F., & Habib, A. (2022). Multiple Damage Detection in PZT Sensor Using Dual Point Contact Method. Sensors, 22(23), 9161. https://doi.org/10.3390/s22239161