A Survey on Deep-Learning-Based LiDAR 3D Object Detection for Autonomous Driving
Abstract
:1. Introduction
- An in-depth analysis of LiDAR-based 3D object detection, state-of-the-art (SOTA) methods, and a comparison of SOTA methods are presented.
- The LiDAR processing and feature-extraction techniques are summarized.
- The 3D coordinate systems commonly used in 3D detection are presented.
- We categorize deep-learning-based LiDAR 3D detection methods based on LiDAR data processing techniques as projection, voxel, and raw point cloud.
2. Related Work
3. Background
3.1. Feature-Extraction Methods
3.2. Coordinate Systems
3.3. Stages of Autonomous Driving
- Vehicle Location and Environment: For fully autonomous driving without human intervention, precise and accurate information about the driving environment must know the road signs, pedestrians, traffic, and others.
- Prediction and Decision Algorithms: An efficient deep or machine learning algorithm is needed to detect, predict, and decide when interacting with other vehicles, pedestrians, and situations.
- High Accuracy and Real-time Maps: Detailed, precise, and complete maps are needed to obtain information about the driving environment for path and trajectory planning.
- Vehicle Driver Interface: Smooth and self-adaptive transition to/from the driver and an effective way to keep the driver alert and ready is needed, which increases customer satisfaction and confidence, especially at the beginning of the technology.
4. LiDAR 3D Object-Detection Methods
4.1. Projection Methods
4.2. Volumetric (Voxel) Methods
4.3. Raw Point Cloud Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BEV | Bird’s-Eye View |
CNN | Convolutional Neural Network |
DL | Deep Learning |
GCN | Graph Convolution Network |
IOU | Intersection Over Union |
LiDAR | Light Detection and Ranging |
mAP | Mean Average Precision |
NMS | Non-maximal Suppression |
RPN | Region Proposal Network |
SOTA | State-of-the-art |
VFE | Voxel Feature Encoding |
WCNN3D | Wavelet Convolutional Neural Network for 3D Detection |
YOLO | You Only Look Once |
References
- Urmson, C.; Anhalt, J.; Bagnell, D.; Baker, C.; Bittner, R.; Clark, M.; Dolan, J.; Duggins, D.; Galatali, T.; Geyer, C.; et al. Autonomous driving in urban environments: Boss and the urban challenge. J. Field Robot. 2008, 25, 425–466. [Google Scholar] [CrossRef] [Green Version]
- Feng, D.; Haase-Schuetz, C.; Rosenbaum, L.; Hertlein, H.; Duffhauss, F.; Gläser, C.; Wiesbeck, W.; Dietmayer, K.C. Deep Multi-Modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges. IEEE Trans. Intell. Transp. Syst. 2021, 22, 1341–1360. [Google Scholar] [CrossRef] [Green Version]
- Alaba, S.; Gurbuz, A.; Ball, J. A Comprehensive Survey of Deep Learning Multisensor Fusion-based 3D Object Detection for Autonomous Driving: Methods, Challenges, Open Issues, and Future Directions. TechRxiv 2022. [Google Scholar] [CrossRef]
- Arnold, E.; Al-Jarrah, O.Y.; Dianati, M.; Fallah, S.; Oxtoby, D.; Mouzakitis, A. A survey on 3d object detection methods for autonomous driving applications. IEEE Trans. Intell. Transp. Syst. 2019, 20, 3782–3795. [Google Scholar] [CrossRef] [Green Version]
- Khader, M.; Cherian, S. An Introduction to Automotive LIDAR. Texas Instruments. 2020. Available online: https://www.ti.com/lit/wp/slyy150a/slyy150a.pdf (accessed on 15 November 2022).
- Tian, Z.; Chu, X.; Wang, X.; Wei, X.; Shen, C. Fully Convolutional One-Stage 3D Object Detection on LiDAR Range Images. arXiv 2022, arXiv:2205.13764. [Google Scholar]
- Chen, X.; Ma, H.; Wan, J.; Li, B.; Xia, T. Multi-view 3d object detection network for autonomous driving. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1907–1915. [Google Scholar]
- Ku, J.; Mozifian, M.; Lee, J.; Harakeh, A.; Waslander, S.L. Joint 3d proposal generation and object detection from view aggregation. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 1–8. [Google Scholar]
- Zhou, Y.; Tuzel, O. Voxelnet: End-to-end learning for point cloud based 3d object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4490–4499. [Google Scholar]
- Qi, C.R.; Liu, W.; Wu, C.; Su, H.; Guibas, L.J. Frustum pointnets for 3d object detection from rgb-d data. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 918–927. [Google Scholar]
- Cao, P.; Chen, H.; Zhang, Y.; Wang, G. Multi-view frustum pointnet for object detection in autonomous driving. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 3896–3899. [Google Scholar]
- Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660. [Google Scholar]
- Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. arXiv 2017, arXiv:1706.02413. [Google Scholar]
- Shi, S.; Wang, X.; Li, H. Pointrcnn: 3d object proposal generation and detection from point cloud. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 770–779. [Google Scholar]
- Sun, X.; Wang, S.; Wang, M.; Cheng, S.S.; Liu, M. An advanced LiDAR point cloud sequence coding scheme for autonomous driving. In Proceedings of the 28th ACM International Conference on Multimedia Seattle, Washington, DC, USA, 12–16 October 2020; pp. 2793–2801. [Google Scholar]
- Sun, X.; Wang, M.; Du, J.; Sun, Y.; Cheng, S.S.; Xie, W. A Task-Driven Scene-Aware LiDAR Point Cloud Coding Framework for Autonomous Vehicles. IEEE Trans. Ind. Inform. 2022, 1–11. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, L.; Sun, X.; Zhao, J.; Deng, Z.; Yang, S. An Efficient LiDAR Point Cloud Map Coding Scheme Based on Segmentation and Frame-Inserting Network. Sensors 2022, 22, 5108. [Google Scholar] [CrossRef]
- Jiao, L.; Zhang, F.; Liu, F.; Yang, S.; Li, L.; Feng, Z.; Qu, R. A survey of deep learning-based object detection. IEEE Access 2019, 7, 128837–128868. [Google Scholar] [CrossRef]
- Rahman, M.M.; Tan, Y.; Xue, J.; Lu, K. Recent advances in 3D object detection in the era of deep neural networks: A survey. IEEE Trans. Image Process. 2019, 29, 2947–2962. [Google Scholar] [CrossRef]
- Li, Y.; Ma, L.; Zhong, Z.; Liu, F.; Chapman, M.A.; Cao, D.; Li, J. Deep Learning for LiDAR Point Clouds in Autonomous Driving: A Review. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 3412–3432. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, D.; Silva, A.; Névoa, R.; Simões, C.; Gonzalez, D.; Guevara, M.; Novais, P.; Monteiro, J.; Melo-Pinto, P. Point-cloud based 3D object detection and classification methods for self-driving applications: A survey and taxonomy. Inf. Fusion 2021, 68, 161–191. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, H.; Hu, Q.; Liu, H.; Liu, L.; Bennamoun, M. Deep learning for 3d point clouds: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 4338–4364. [Google Scholar] [CrossRef] [PubMed]
- Qian, R.; Lai, X.; Li, X. 3D Object Detection for Autonomous Driving: A Survey. arXiv 2021, arXiv:2106.10823. [Google Scholar] [CrossRef]
- Alaba, S.; Ball, J. Deep Learning-based Image 3D Object Detection for Autonomous Driving: Review. TechRxiv 2022. [Google Scholar] [CrossRef]
- Harris, C.G.; Stephens, M. A combined corner and edge detector. In Proceedings of the 4th Alvey Vision Conference, Manchester, UK, 31 August–2 September 1988; pp. 10–5244. [Google Scholar]
- Shi, J.; Tomasi. Good features to track. In Proceedings of the 1994 IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 21–23 June 1994; pp. 593–600. [Google Scholar]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-up robust features (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359. [Google Scholar] [CrossRef]
- Alaba, S.Y.; Nabi, M.; Shah, C.; Prior, J.; Campbell, M.D.; Wallace, F.; Ball, J.E.; Moorhead, R. Class-Aware Fish Species Recognition Using Deep Learning for an Imbalanced Dataset. Sensors 2022, 22, 8268. [Google Scholar] [CrossRef]
- Islam, F.; Nabi, M.; Ball, J.E. Off-Road Detection Analysis for Autonomous Ground Vehicles: A Review. Sensors 2022, 22, 8463. [Google Scholar] [CrossRef]
- Nabi, M.; Senyurek, V.; Gurbuz, A.C.; Kurum, M. Deep Learning-Based Soil Moisture Retrieval in CONUS Using CYGNSS Delay–Doppler Maps. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 6867–6881. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, inception-resnet and the impact of residual connections on learning. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Yan, Y.; Mao, Y.; Li, B. Second: Sparsely embedded convolutional detection. Sensors 2018, 18, 3337. [Google Scholar] [CrossRef]
- Kuang, H.; Wang, B.; An, J.; Zhang, M.; Zhang, Z. Voxel-FPN: Multi-scale voxel feature aggregation for 3D object detection from LIDAR point clouds. Sensors 2020, 20, 704. [Google Scholar] [CrossRef] [Green Version]
- Lang, A.H.; Vora, S.; Caesar, H.; Zhou, L.; Yang, J.; Beijbom, O. Pointpillars: Fast encoders for object detection from point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 12697–12705. [Google Scholar]
- Graham, B. Spatially-sparse convolutional neural networks. arXiv 2014, arXiv:1409.6070. [Google Scholar]
- Graham, B. Sparse 3D convolutional neural networks. arXiv 2015, arXiv:1505.02890. [Google Scholar]
- Wang, D.Z.; Posner, I. Voting for voting in online point cloud object detection. In Proceedings of the Robotics: Science and Systems, Rome, Italy, 13–17 July 2015; pp. 10–15607. [Google Scholar]
- Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic graph cnn for learning on point clouds. Acm Trans. Graph. 2019, 38, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Graham, B.; Engelcke, M.; Van Der Maaten, L. 3d semantic segmentation with submanifold sparse convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 9224–9232. [Google Scholar]
- Engelcke, M.; Rao, D.; Wang, D.Z.; Tong, C.H.; Posner, I. Vote3deep: Fast object detection in 3d point clouds using efficient convolutional neural networks. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Marina Bay Sands Convention Centre, Singapore, 29 May–3 June 2017; pp. 1355–1361. [Google Scholar]
- Li, G.; Müller, M.; Qian, G.; Perez, I.C.D.; Abualshour, A.; Thabet, A.K.; Ghanem, B. Deepgcns: Making gcns go as deep as cnns. IEEE Trans. Pattern Anal. Mach. Intell. 2021. [Google Scholar] [CrossRef]
- MMDetection3D Contributors. MMDetection3D: OpenMMLab Next-Generation Platform for General 3D Object Detection. 2020. Available online: https://github.com/openmmla/mmdetection3d (accessed on 10 November 2022).
- Ding, Z.; Han, X.; Niethammer, M. Votenet: A deep learning label fusion method for multi-atlas segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Shenzhen, China, 13–17 October 2019; pp. 202–210. [Google Scholar]
- Zhang, Z.; Sun, B.; Yang, H.; Huang, Q. H3dnet: 3d object detection using hybrid geometric primitives. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 311–329. [Google Scholar]
- Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012. [Google Scholar]
- Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The kitti dataset. Int. J. Robot. Res. 2013, 32, 1231–1237. [Google Scholar] [CrossRef] [Green Version]
- US National Highway Traffic Safety Administration. The Evolution of Automated Safety Technologies; Technical Report; US National Highway Traffic Safety Administration: Washington, DC, USA, 2022.
- Berger, R. Think Act: Autonomous Driving; Technical Report; Roland Berger Strategy Consultants GMBH: München, Germany, 2014. [Google Scholar]
- Yu, F.; Koltun, V. Multi-scale context aggregation by dilated convolutions. arXiv 2015, arXiv:1511.07122. [Google Scholar]
- Groh, F.; Wieschollek, P.; Lensch, H. Flex-convolution (million-scale point-cloud learning beyond grid-worlds). arXiv 2018, arXiv:1803.07289. [Google Scholar]
- Wang, P.; Chen, P.; Yuan, Y.; Liu, D.; Huang, Z.; Hou, X.; Cottrell, G. Understanding convolution for semantic segmentation. In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018; pp. 1451–1460. [Google Scholar]
- Alaba, S.Y.; Ball, J.E. WCNN3D: Wavelet Convolutional Neural Network-Based 3D Object Detection for Autonomous Driving. Sensors 2022, 22, 7010. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Maji, S.; Kalogerakis, E.; Learned-Miller, E. Multi-view convolutional neural networks for 3d shape recognition. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 945–953. [Google Scholar]
- Milioto, A.; Vizzo, I.; Behley, J.; Stachniss, C. Rangenet++: Fast and accurate lidar semantic segmentation. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Venetian Macao, Macau, 3–8 November 2019; pp. 4213–4220. [Google Scholar]
- Li, B.; Zhang, T.; Xia, T. Vehicle detection from 3d lidar using fully convolutional network. arXiv 2016, arXiv:1608.07916. [Google Scholar]
- Caesar, H.; Bankiti, V.; Lang, A.H.; Vora, S.; Liong, V.E.; Xu, Q.; Krishnan, A.; Pan, Y.; Baldan, G.; Beijbom, O. nuscenes: A multimodal dataset for autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11621–11631. [Google Scholar]
- Yu, S.L.; Westfechtel, T.; Hamada, R.; Ohno, K.; Tadokoro, S. Vehicle detection and localization on bird’s eye view elevation images using convolutional neural network. In Proceedings of the 2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR), Shanghai, China, 11–13 October 2017; pp. 102–109. [Google Scholar]
- Wirges, S.; Fischer, T.; Stiller, C.; Frias, J.B. Object detection and classification in occupancy grid maps using deep convolutional networks. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 3530–3535. [Google Scholar]
- Beltrán, J.; Guindel, C.; Moreno, F.M.; Cruzado, D.; Garcia, F.; De La Escalera, A. Birdnet: A 3d object detection framework from lidar information. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 3517–3523. [Google Scholar]
- Barrera, A.; Guindel, C.; Beltrán, J.; García, F. Birdnet+: End-to-end 3d object detection in lidar bird’s eye view. In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece, 20–23 September 2020; pp. 1–6. [Google Scholar]
- Barrera, A.; Beltrán, J.; Guindel, C.; Iglesias, J.A.; García, F. BirdNet+: Two-Stage 3D Object Detection in LiDAR through a Sparsity-Invariant Bird’s Eye View. IEEE Access 2021, 9, 160299–160316. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In Proceedings of the Neural Information Processing Systems (NIPS), Montreal, QC, Canada, 11–12 December 2015. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Priya, M.; Pankaj, D.S. 3DYOLO: Real-time 3D Object Detection in 3D Point Clouds for Autonomous Driving. In Proceedings of the 2021 IEEE International India Geoscience and Remote Sensing Symposium (InGARSS), Virtual Conference, 6–10 December 2021; pp. 41–44. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Chen, K.; Oldja, R.; Smolyanskiy, N.; Birchfield, S.; Popov, A.; Wehr, D.; Eden, I.; Pehserl, J. Mvlidarnet: Real-time multi-class scene understanding for autonomous driving using multiple views. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 2288–2294. [Google Scholar]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the Kdd, Portland, OR, USA, 2–4 August 1996; pp. 226–231. [Google Scholar]
- Behley, J.; Garbade, M.; Milioto, A.; Quenzel, J.; Behnke, S.; Stachniss, C.; Gall, J. Semantickitti: A dataset for semantic scene understanding of lidar sequences. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9297–9307. [Google Scholar]
- Lu, Y.; Hao, X.; Sun, S.; Chai, W.; Tong, M.; Velipasalar, S. RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation. arXiv 2021, arXiv:2111.09515. [Google Scholar]
- Du, X.; Ang, M.H.; Karaman, S.; Rus, D. A general pipeline for 3d detection of vehicles. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 3194–3200. [Google Scholar]
- Yang, B.; Luo, W.; Urtasun, R. Pixor: Real-time 3d object detection from point clouds. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7652–7660. [Google Scholar]
- Yang, B.; Liang, M.; Urtasun, R. Hdnet: Exploiting hd maps for 3d object detection. In Proceedings of the Conference on Robot Learning, Zürich, Switzerland, 29–31 October 2018; pp. 146–155. [Google Scholar]
- Luo, W.; Yang, B.; Urtasun, R. Fast and furious: Real time end-to-end 3d detection, tracking and motion forecasting with a single convolutional net. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 3569–3577. [Google Scholar]
- Simony, M.; Milzy, S.; Amendey, K.; Gross, H.M. Complex-yolo: An euler-region-proposal for real-time 3d object detection on point clouds. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Ali, W.; Abdelkarim, S.; Zidan, M.; Zahran, M.; El Sallab, A. Yolo3d: End-to-end real-time 3d oriented object bounding box detection from lidar point cloud. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Sedaghat, N.; Zolfaghari, M.; Amiri, E.; Brox, T. Orientation-boosted voxel nets for 3d object recognition. arXiv 2016, arXiv:1604.03351. [Google Scholar]
- Li, B. 3d fully convolutional network for vehicle detection in point cloud. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, September 24–28 2017; pp. 1513–1518. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Ye, M.; Xu, S.; Cao, T. Hvnet: Hybrid voxel network for lidar based 3d object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1631–1640. [Google Scholar]
- Du, L.; Ye, X.; Tan, X.; Feng, J.; Xu, Z.; Ding, E.; Wen, S. Associate-3Ddet: Perceptual-to-conceptual association for 3D point cloud object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 13329–13338. [Google Scholar]
- Liu, Z.; Zhao, X.; Huang, T.; Hu, R.; Zhou, Y.; Bai, X. Tanet: Robust 3d object detection from point clouds with triple attention. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; pp. 11677–11684. [Google Scholar]
- Deng, J.; Shi, S.; Li, P.; Zhou, W.; Zhang, Y.; Li, H. Voxel R-CNN: Towards High Performance Voxel-based 3D Object Detection. arXiv 2021, arXiv:cs.CV/2012.15712. [Google Scholar] [CrossRef]
- Sun, P.; Kretzschmar, H.; Dotiwalla, X.; Chouard, A.; Patnaik, V.; Tsui, P.; Guo, J.; Zhou, Y.; Chai, Y.; Caine, B.; et al. Scalability in perception for autonomous driving: Waymo open dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 2446–2454. [Google Scholar]
- Li, Z.; Yao, Y.; Quan, Z.; Xie, J.; Yang, W. Spatial information enhancement network for 3D object detection from point cloud. Pattern Recognit. 2022, 128, 108684. [Google Scholar] [CrossRef]
- Liu, S.; Huang, W.; Cao, Y.; Li, D.; Chen, S. SMS-Net: Sparse multi-scale voxel feature aggregation network for LiDAR-based 3D object detection. Neurocomputing 2022, 501, 555–565. [Google Scholar] [CrossRef]
- Sun, J.; Ji, Y.M.; Wu, F.; Zhang, C.; Sun, Y. Semantic-aware 3D-voxel CenterNet for point cloud object detection. Comput. Electr. Eng. 2022, 98, 107677. [Google Scholar] [CrossRef]
- Liu, M.; Ma, J.; Zheng, Q.; Liu, Y.; Shi, G. 3D Object Detection Based on Attention and Multi-Scale Feature Fusion. Sensors 2022, 22, 3935. [Google Scholar] [CrossRef]
- Wang, L.; Song, Z.; Zhang, X.; Wang, C.; Zhang, G.; Zhu, L.; Li, J.; Liu, H. SAT-GCN: Self-attention graph convolutional network-based 3D object detection for autonomous driving. Knowl.-Based Syst. 2022, 259, 110080. [Google Scholar] [CrossRef]
- Fan, L.; Wang, F.; Wang, N.; Zhang, Z. Fully Sparse 3D Object Detection. arXiv 2022, arXiv:2207.10035. [Google Scholar]
- Hu, J.S.; Kuai, T.; Waslander, S.L. Point density-aware voxels for lidar 3d object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 8469–8478. [Google Scholar]
- Hosang, J.; Benenson, R.; Dollár, P.; Schiele, B. What makes for effective detection proposals? IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 814–830. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Jia, K. Frustum convnet: Sliding frustums to aggregate local point-wise features for amodal 3d object detection. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 1742–1749. [Google Scholar]
- Song, S.; Lichtenberg, S.P.; Xiao, J. Sun rgb-d: A rgb-d scene understanding benchmark suite. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 567–576. [Google Scholar]
- McCrae, S.; Zakhor, A. 3D object detection for autonomous driving using temporal LiDAR data. In Proceedings of the 2020 IEEE International Conference on Image Processing (ICIP), Virtual Conference, 25–28 October 2020; pp. 2661–2665. [Google Scholar]
- Wang, Y.; Fathi, A.; Kundu, A.; Ross, D.A.; Pantofaru, C.; Funkhouser, T.; Solomon, J. Pillar-based object detection for autonomous driving. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 18–34. [Google Scholar]
- Fan, L.; Pang, Z.; Zhang, T.; Wang, Y.X.; Zhao, H.; Wang, F.; Wang, N.; Zhang, Z. Embracing single stride 3d object detector with sparse transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 8458–8468. [Google Scholar]
- Tong, G.; Peng, H.; Shao, Y.; Yin, Q.; Li, Z. ASCNet: 3D object detection from point cloud based on adaptive spatial context features. Neurocomputing 2022, 475, 89–101. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, H.; Lu, J. A semi-supervised 3D object detection method for autonomous driving. Displays 2021, 71, 102117. [Google Scholar] [CrossRef]
- Caine, B.; Roelofs, R.; Vasudevan, V.; Ngiam, J.; Chai, Y.; Chen, Z.; Shlens, J. Pseudo-labeling for Scalable 3D Object Detection. arXiv 2021, arXiv:2103.02093. [Google Scholar]
- Ding, Z.; Hu, Y.; Ge, R.; Huang, L.; Chen, S.; Wang, Y.; Liao, J. 1st Place Solution for Waymo Open Dataset Challenge–3D Detection and Domain Adaptation. arXiv 2020, arXiv:2006.15505. [Google Scholar]
- Bai, Z.; Wu, G.; Barth, M.J.; Liu, Y.; Sisbot, A.; Oguchi, K. PillarGrid: Deep Learning-based Cooperative Perception for 3D Object Detection from Onboard-Roadside LiDAR. arXiv 2022, arXiv:2203.06319. [Google Scholar]
- Dosovitskiy, A.; Ros, G.; Codevilla, F.; Lopez, A.; Koltun, V. CARLA: An open urban driving simulator. In Proceedings of the Conference on Robot Learning, Mountain View, CA, USA, 13–15 November 2017; pp. 1–16. [Google Scholar]
- Lin, J.; Yin, H.; Yan, J.; Ge, W.; Zhang, H.; Rigoll, G. Improved 3D Object Detector Under Snowfall Weather Condition Based on LiDAR Point Cloud. IEEE Sens. J. 2022, 22, 16276–16292. [Google Scholar] [CrossRef]
- Pitropov, M.; Garcia, D.E.; Rebello, J.; Smart, M.; Wang, C.; Czarnecki, K.; Waslander, S. Canadian adverse driving conditions dataset. Int. J. Robot. Res. 2021, 40, 681–690. [Google Scholar] [CrossRef]
- Shi, S.; Guo, C.; Jiang, L.; Wang, Z.; Shi, J.; Wang, X.; Li, H. Pv-rcnn: Point-voxel feature set abstraction for 3d object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10529–10538. [Google Scholar]
- Shi, S.; Wang, Z.; Shi, J.; Wang, X.; Li, H. From points to parts: 3d object detection from point cloud with part-aware and part-aggregation network. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 2647–2664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, B.; van der Maaten, L. Submanifold sparse convolutional networks. arXiv 2017, arXiv:1706.01307. [Google Scholar]
- Yang, Z.; Sun, Y.; Liu, S.; Shen, X.; Jia, J. Std: Sparse-to-dense 3d object detector for point cloud. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1951–1960. [Google Scholar]
- Yu, H.X.; Wu, J.; Yi, L. Rotationally Equivariant 3D Object Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 1456–1464. [Google Scholar]
- Qi, C.R.; Litany, O.; He, K.; Guibas, L.J. Deep hough voting for 3d object detection in point clouds. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9277–9286. [Google Scholar]
- Lu, H.; Chen, X.; Zhang, G.; Zhou, Q.; Ma, Y.; Zhao, Y. SCANet: Spatial-channel attention network for 3D object detection. In Proceedings of the ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 1992–1996. [Google Scholar]
- Liu, Z.; Zhang, Z.; Cao, Y.; Hu, H.; Tong, X. Group-free 3d object detection via transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 2949–2958. [Google Scholar]
- Yang, Z.; Sun, Y.; Liu, S.; Jia, J. 3dssd: Point-based 3d single stage object detector. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11040–11048. [Google Scholar]
- He, C.; Zeng, H.; Huang, J.; Hua, X.S.; Zhang, L. Structure aware single-stage 3d object detection from point cloud. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11873–11882. [Google Scholar]
- Gustafsson, F.K.; Danelljan, M.; Schon, T.B. Accurate 3D Object Detection using Energy-Based Models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 2855–2864. [Google Scholar]
- Zheng, W.; Tang, W.; Chen, S.; Jiang, L.; Fu, C.W. CIA-SSD: Confident IoU-Aware Single-Stage Object Detector From Point Cloud. arXiv 2020, arXiv:2012.03015. [Google Scholar] [CrossRef]
- Shi, W.; Rajkumar, R. Point-gnn: Graph neural network for 3d object detection in a point cloud. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1711–1719. [Google Scholar]
- Zhou, D.; Fang, J.; Song, X.; Liu, L.; Yin, J.; Dai, Y.; Li, H.; Yang, R. Joint 3d instance segmentation and object detection for autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1839–1849. [Google Scholar]
- Caron, M.; Bojanowski, P.; Joulin, A.; Douze, M. Deep clustering for unsupervised learning of visual features. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 132–149. [Google Scholar]
- Mao, J.; Niu, M.; Bai, H.; Liang, X.; Xu, H.; Xu, C. Pyramid r-cnn: Towards better performance and adaptability for 3d object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 2723–2732. [Google Scholar]
- Yang, J.; Shi, S.; Wang, Z.; Li, H.; Qi, X. ST3D: Self-training for Unsupervised Domain Adaptation on 3D Object Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 10368–10378. [Google Scholar]
- Kesten, R.; Usman, M.; Houston, J.; Pandya, T.; Nadhamuni, K.; Ferreira, A.; Yuan, M.; Low, B.; Jain, A.; Ondruska, P.; et al. Lyft Level 5 Perception Dataset 2020. 2019. Available online: https://level-5.global/level5/data/ (accessed on 27 October 2022).
- Hegde, D.; Patel, V. Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection. arXiv 2021, arXiv:2111.15656. [Google Scholar]
- Zheng, W.; Tang, W.; Jiang, L.; Fu, C.W. SE-SSD: Self-Ensembling Single-Stage Object Detector From Point Cloud. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 14494–14503. [Google Scholar]
- Wang, J.; Gang, H.; Ancha, S.; Chen, Y.T.; Held, D. Semi-supervised 3D Object Detection via Temporal Graph Neural Networks. In Proceedings of the 2021 International Conference on 3D Vision (3DV), London, UK, 1–3 December 2021; pp. 413–422. [Google Scholar]
- Patil, A.; Malla, S.; Gang, H.; Chen, Y.T. The h3d dataset for full-surround 3d multi-object detection and tracking in crowded urban scenes. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 9552–9557. [Google Scholar]
- Zhang, L.; Dong, R.; Tai, H.S.; Ma, K. PointDistiller: Structured Knowledge Distillation Towards Efficient and Compact 3D Detection. arXiv 2022, arXiv:2205.11098. [Google Scholar]
- Wang, J.; Lin, X.; Yu, H. POAT-Net: Parallel Offset-attention Assisted Transformer for 3D Object Detection for Autonomous Driving. IEEE Access 2021, 9, 151110–151117. [Google Scholar] [CrossRef]
- Ren, S.; Pan, X.; Zhao, W.; Nie, B.; Han, B. Dynamic graph transformer for 3D object detection. Knowl.-Based Syst. 2022, 259, 110085. [Google Scholar] [CrossRef]
- Theodose, R.; Denis, D.; Chateau, T.; Frémont, V.; Checchin, P. A Deep Learning Approach for LiDAR Resolution-Agnostic Object Detection. IEEE Trans. Intell. Transp. Syst. 2021, 23, 14582–14593. [Google Scholar] [CrossRef]
- Xiao, P.; Shao, Z.; Hao, S.; Zhang, Z.; Chai, X.; Jiao, J.; Li, Z.; Wu, J.; Sun, K.; Jiang, K.; et al. PandaSet: Advanced Sensor Suite Dataset for Autonomous Driving. In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN, USA, 19–21 September 2021; pp. 3095–3101. [Google Scholar]
- Nagesh, S.; Baig, A.; Srinivasan, S. Structure Aware and Class Balanced 3D Object Detection on nuScenes Dataset. arXiv 2022, arXiv:2205.12519. [Google Scholar]
- Zhu, B.; Jiang, Z.; Zhou, X.; Li, Z.; Yu, G. Class-balanced grouping and sampling for point cloud 3d object detection. arXiv 2019, arXiv:1908.09492. [Google Scholar]
- Wang, M.; Chen, Q.; Fu, Z. LSNet: Learned Sampling Network for 3D Object Detection from Point Clouds. Remote Sens. 2022, 14, 1539. [Google Scholar] [CrossRef]
- Hahner, M.; Sakaridis, C.; Bijelic, M.; Heide, F.; Yu, F.; Dai, D.; Van Gool, L. Lidar snowfall simulation for robust 3d object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 16364–16374. [Google Scholar]
- Chen, Y.; Liu, S.; Shen, X.; Jia, J. Fast point r-cnn. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9775–9784. [Google Scholar]
- Xu, Q.; Zhou, Y.; Wang, W.; Qi, C.R.; Anguelov, D. Spg: Unsupervised domain adaptation for 3d object detection via semantic point generation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 15446–15456. [Google Scholar]
- Li, X.; Zhang, T.; Wang, S.; Zhu, G.; Wang, R.; Chang, T.H. Large-Scale Bandwidth and Power Optimization for Multi-Modal Edge Intelligence Autonomous Driving. arXiv 2022, arXiv:2210.09659. [Google Scholar]
Methods | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Car | Pedestrians | Cyclists | Car | Pedestrians | Cyclists | |||||||||||||
E | M | H | E | M | H | E | M | H | E | M | H | E | M | H | E | M | H | |
BirdNet [66] | 75.5 | 50.8 | 50.0 | 26.1 | 21.4 | 20.0 | 39.0 | 27.2 | 25.5 | 14.8 | 13.4 | 12.0 | 14.3 | 11.8 | 10.6 | 18.4 | 12.4 | 11.9 |
BirdNet+ [67] | 84.8 | 63.3 | 61.2 | 45.5 | 38.3 | 35.4 | 72.5 | 52.2 | 46.6 | 70.1 | 51.9 | 50.0 | 38.0 | 31.5 | 29.5 | 67.4 | 47.7 | 42.9 |
VoxelNet [9] | 89.4 | 79.3 | 77.4 | 46.1 | 40.7 | 38.1 | 66.7 | 57.7 | 50.6 | 77.5 | 65.1 | 57.7 | 39.5 | 33.7 | 31.5 | 61.2 | 48.4 | 44.4 |
SECOND [39] | 88.1 | 79.4 | 78.0 | 55.1 | 46.3 | 44.8 | 73.7 | 56.0 | 48.8 | 83.1 | 73.7 | 66.2 | 51.1 | 42.6 | 37.3 | 70.5 | 53.9 | 46.9 |
Fast point R-CNN [143] | 88.0 | 86.1 | 78.2 | - | - | - | - | - | - | 84.3 | 75.7 | 67.4 | - | - | - | - | - | - |
PointPillars [41] | 88.4 | 86.1 | 79.8 | 58.7 | 50.2 | 47.2 | 79.1 | 62.3 | 56.0 | 79.1 | 75.0 | 68.3 | 52.1 | 43.5 | 41.5 | 75.8 | 59.1 | 53.0 |
3DSSD [120] | 88.4 | 79.6 | 74.6 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
SASSD [121] | 88.8 | 79.8 | 74.2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
CIA-SSD [123] | 89.6 | 80.3 | 72.9 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
PIXOR++ [79] | 89.4 | 83.7 | 78.0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
TANet [88,141] | 91.6 | 86.5 | 81.2 | - | - | - | - | - | - | 84.4 | 75.9 | 68.8 | - | - | - | - | - | - |
LSNet [141] | 92.1 | 85.9 | 80.8 | - | - | - | - | - | - | 86.1 | 73.6 | 68.6 | - | - | - | - | - | - |
Associate-3Ddet [87] | 91.4 | 88.1 | 83.0 | - | - | - | - | - | - | 86.0 | 77.4 | 70.5 | - | - | - | - | - | - |
HVNet [86] (r40) | 92.8 | 88.8 | 83.4 | 54.8 | 48.9 | 46.3 | 84.0 | 71.2 | 63.7 | - | - | - | - | - | - | - | - | - |
Part-A2 [113] | 91.7 | 87.8 | 84.6 | - | - | - | - | - | - | 87.81 | 78.49 | 73.51 | - | - | - | - | - | - |
PV-RCNN [112] (r40) | 95.0 | 90.7 | 86.1 | 59.9 | 50.6 | 46.7 | 82.5 | 68.9 | 62.1 | 90.3 | 81.4 | 76.8 | 52.2 | 43.3 | 40.3 | 78.6 | 63.7 | 57.7 |
WCNN3D [59] | 90.1 | 88.0 | 86.5 | 68.4 | 63.2 | 59.4 | 82.78 | 64.3 | 60.3 | 87.8 | 77.6 | 75.4 | 62.0 | 57.7 | 52.1 | 82.7 | 61.0 | 57.7 |
Point-GNN [124] | 93.1 | 89.2 | 83.9 | - | - | - | - | - | - | 88.3 | 79.5 | 72.3 | - | - | - | - | - | - |
SE-SSD [131] (r40) | 95.7 | 91.8 | 86.7 | - | - | - | - | - | - | 91.5 | 82.5 | 77.2 | - | - | - | - | - | - |
Method | LiDAR Encoding Technique | Dataset Used | Year of Publication |
---|---|---|---|
Yu et al. [64] | projection | KITTI | 2017 |
BirdNet [66] | projection | KITTI | 2017 |
Wirges et al. [65] | projection | KITTI | 2018 |
PIXOR [78] | projection | KITTI | 2018 |
Complex-YOLO [81] | projection | KITTI | 2018 |
Birdnet+ [67] | projection | KITTI | 2020 |
MVLidarNet [73] | projection | KITTI | 2020 |
BirdNet+ [68] | projection | KITTI & Nuscenes | 2021 |
YOLO3D [71] | projection | KITTI | 2021 |
RAANet [76] | projection | KITTI & nuScenes | 2021 |
Tian et al. [6] | Projection | nuScenes | 2022 |
3DFCN [84] | voxel | KITTI | 2017 |
VoxelNet [9] | voxel | KITTI | 2018 |
SECOND [39] | voxel | KITTI | 2018 |
F-PointNet [10] | voxel | KITTI & SUN RGB-D | 2018 |
MVFP [11] | voxel | KITTI | 2019 |
Frustum-ConvNet [99] | voxel | KITTI & SUN RGB-D | 2019 |
Pointpillars [41] | pillar | KITTI | 2019 |
McCrae and Zakhor [101] | pillar | KITTI | 2020 |
Wang et al. [102] | pillar | Waymo | 2020 |
HVNet [86] | voxel | KITTI | 2020 |
Associate-3Ddet [87] | voxel | KITTI | 2020 |
TANet [88] | voxel | KITTI | 2020 |
Voxel R-CNN [89] | voxel | KITTI & Waymo | 2021 |
SIENet [91] | voxel | KITTI | 2021 |
Zhang et al. [105] | pillar | KITTI | 2021 |
SMS-Net [92] | voxel | KITTI | 2022 |
Sun et al. [93] | voxel | KITTI | 2022 |
MA-MFFC [94] | voxel | KITTI | 2022 |
SAT-GCN [95] | voxel | KITTI & Nuscenes | 2022 |
Fan et al. [96] | voxel | Waymo | 2022 |
Li et al. [91] | voxel | KITTI | 2022 |
PDV [97] | voxel | KITTI & Waymo | 2022 |
Fan et al. [103] | pillar | Waymo | 2022 |
ASCNet [104] | pillar | KITTI | 2022 |
PillarGrid [108] | pillar | synthetic data | 2022 |
Lin et al. [110] | pillar | KITTI & CADC | 2022 |
WCNN3D [59] | pillar | KITTI | 2022 |
PointNet [12] | raw point cloud | ScanNet | 2017 |
PointNet++ [13] | raw point cloud | ScanNet | 2017 |
PointRCNN [14] | raw point cloud | KITTI | 2019 |
STD [115] | raw point cloud | KITTI | 2019 |
Part-A2 [113] | raw point cloud | KITTI | 2020 |
3DSSD [120] | raw point cloud | KITTI & nuScenes | 2020 |
SASSD [121] | raw point cloud | KITTI | 2020 |
CIA-SSD [123] | raw point cloud | KITTI | 2020 |
Point-GNN [124] | raw point cloud | KITTI | 2020 |
Zhou et al. [125] | raw point cloud | KITTI | 2020 |
Auxiliary network [121] | raw point cloud | nuScenes | 2020 |
LSNet [141] | raw point cloud | KITTI | 2021 |
Pyramid R-CNN [127] | raw point cloud | KITTI & Waymo | 2021 |
ST3D [128] | raw point cloud | KITTI, Waymo, nuScenes & Lyft | 2021 |
SE-SSD [131] | raw point cloud | KITTI | 2021 |
Wang et al. [132] | raw point cloud | nuScenes & H3D | 2021 |
POAT-Net [135] | raw point cloud | KITTI | 2021 |
Theodose et al. [137] | raw point cloud | KITTI, nuScenes, & Pandaset | 2021 |
DGT-Det3D [136] | raw point cloud | KITTI & Waymo | 2022 |
Yu et al. [116] | raw point cloud | KITTI, ScanNetv2 & SUN RGB-D | 2022 |
Hahner et al. [142] | raw point cloud | STF | 2022 |
PointDistiller [134] | raw point cloud | KITTI | 2022 |
Fast Point R-CNN [143] | voxel & raw point cloud | KITTI | 2019 |
Pv-Rcnn [112] | voxel &raw point cloud | KITTI &Waymo | 2020 |
Spg [144] | voxel & raw point cloud | KITTI &Waymo | 2021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alaba, S.Y.; Ball, J.E. A Survey on Deep-Learning-Based LiDAR 3D Object Detection for Autonomous Driving. Sensors 2022, 22, 9577. https://doi.org/10.3390/s22249577
Alaba SY, Ball JE. A Survey on Deep-Learning-Based LiDAR 3D Object Detection for Autonomous Driving. Sensors. 2022; 22(24):9577. https://doi.org/10.3390/s22249577
Chicago/Turabian StyleAlaba, Simegnew Yihunie, and John E. Ball. 2022. "A Survey on Deep-Learning-Based LiDAR 3D Object Detection for Autonomous Driving" Sensors 22, no. 24: 9577. https://doi.org/10.3390/s22249577