A Robust Deep Learning Ensemble-Driven Model for Defect and Non-Defect Recognition and Classification Using a Weighted Averaging Sequence-Based Meta-Learning Ensembler
Abstract
:1. Introduction
2. Related Works
3. Theoretical Background and Method
3.1. The Contributing CNN Models
3.2. The Weighted Averaging Sequence-Based Meta-Feature Learning Derivative
4. Experiments
4.1. Dataset Preparation Process
4.2. Experimental and Evaluation Metrics
5. Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anand, S.; Priya, L. A Guide for Machine Vision in Quality Control; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Goetsch, D.L.; Davis, S.B. Quality Management for Organizational Excellence; Pearson: Upper Saddle River, NJ, USA, 2014. [Google Scholar]
- Naranjo-Torres, J.; Mora, M.; Hernández-García, R.; Barrientos, R.J.; Fredes, C.; Valenzuela, A. A review of convolutional neural network applied to fruit image processing. Appl. Sci. 2020, 10, 3443. [Google Scholar] [CrossRef]
- Czimmermann, T.; Ciuti, G.; Milazzo, M.; Chiurazzi, M.; Roccella, S.; Oddo, C.M.; Dario, P. Visual-based defect detection and classification approaches for industrial applications—A survey. Sensors 2020, 20, 1459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alom, M.Z.; Taha, T.M.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.S.; Van Esesn, B.C.; Awwal, A.A.S.; Asari, V.K. The history began from alexnet: A comprehensive survey on deep learning approaches. arXiv 2018, arXiv:1803.01164. [Google Scholar]
- He, Y.; Song, K.; Meng, Q.; Yan, Y. An end-to-end steel surface defect detection approach via fusing multiple hierarchical features. IEEE Trans. Instrum. Meas. 2019, 69, 1493–1504. [Google Scholar] [CrossRef]
- Borji, A.; Cheng, M.-M.; Jiang, H.; Li, J. Salient object detection: A benchmark. IEEE Trans. Image Process. 2015, 24, 5706–5722. [Google Scholar] [CrossRef] [Green Version]
- LeCun, Y. LeNet-5, Convolutional Neural Networks. 2015. Available online: http://yann.lecun.com/exdb/lenet (accessed on 12 August 2022).
- Tao, X.; Wang, Z.; Zhang, Z.; Zhang, D.; Xu, D.; Gong, X.; Zhang, L. Wire defect recognition of spring-wire socket using multitask convolutional neural networks. IEEE Trans. Compon. Packag. Manuf. Technol. 2018, 8, 689–698. [Google Scholar] [CrossRef]
- Bartler, A.; Mauch, L.; Yang, B.; Reuter, M.; Stoicescu, L. Automated detection of solar cell defects with deep learning. In Proceedings of the 2018 26th European Signal Processing Conference (EUSIPCO), Roma, Italy, 3–7 September 2018; pp. 2035–2039. [Google Scholar]
- Mundt, M.; Majumder, S.; Murali, S.; Panetsos, P.; Ramesh, V. Meta-learning convolutional neural architectures for multi-target concrete defect classification with the concrete defect bridge image dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–17 June 2019; pp. 11196–11205. [Google Scholar]
- Stephen, O.; Maduh, U.J.; Sain, M. A Machine Learning Method for Detection of Surface Defects on Ceramic Tiles Using Convolutional Neural Networks. Electronics 2021, 11, 55. [Google Scholar] [CrossRef]
- Aydin, I.; Akin, E.; Karakose, M. Defect classification based on deep features for railway tracks in sustainable transportation. Appl. Soft Comput. 2021, 111, 107706. [Google Scholar] [CrossRef]
- Krummenacher, G.; Ong, C.S.; Koller, S.; Kobayashi, S.; Buhmann, J.M. Wheel defect detection with machine learning. IEEE Trans. Intell. Transp. Syst. 2017, 19, 1176–1187. [Google Scholar] [CrossRef]
- Zheng, Z.; Shen, J.; Shao, Y.; Zhang, J.; Tian, C.; Yu, B.; Zhang, Y. Tire defect classification using a deep convolutional sparse-coding network. Meas. Sci. Technol. 2021, 32, 055401. [Google Scholar] [CrossRef]
- Ajmi, C.; Zapata, J.; Elferchichi, S.; Zaafouri, A.; Laabidi, K. Deep learning technology for weld defects classification based on transfer learning and activation features. Adv. Mater. Sci. Eng. 2020, 2020, 1574350. [Google Scholar] [CrossRef]
- Konovalenko, I.; Maruschak, P.; Brezinová, J.; Viňáš, J.; Brezina, J. Steel surface defect classification using deep residual neural network. Metals 2020, 10, 846. [Google Scholar] [CrossRef]
- Luo, Q.; Sun, Y.; Li, P.; Simpson, O.; Tian, L.; He, Y. Generalized completed local binary patterns for time-efficient steel surface defect classification. IEEE Trans. Instrum. Meas. 2018, 68, 667–679. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Liu, Y.; Liu, M.; Nie, L. Surface defect classification in large-scale strip steel image collection via hybrid chromosome genetic algorithm. Neurocomputing 2016, 181, 86–95. [Google Scholar] [CrossRef]
- Deng, Y.-S.; Luo, A.-C.; Dai, M.-J. Building an automatic defect verification system using deep neural network for pcb defect classification. In Proceedings of the 2018 4th International Conference on Frontiers of Signal Processing (ICFSP), Poitiers, France, 24–27 September 2018; pp. 145–149. [Google Scholar]
- Zhang, L.; Jin, Y.; Yang, X.; Li, X.; Duan, X.; Sun, Y.; Liu, H. Convolutional neural network-based multi-label classification of PCB defects. J. Eng. 2018, 2018, 1612–1616. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, F.; Zhou, J.; Huang, P.; Song, W. A novel approach applied to fault diagnosis for micro-defects on piston throat. Measurement 2021, 173, 108508. [Google Scholar] [CrossRef]
- Zheng, B.; Wang, C.; Qing, S. Piston Surface Defect Recognition Method Based on Image Processing. In Proceedings of the 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 17–19 June 2022; pp. 928–932. [Google Scholar]
- Nikolić, F.; Štajduhar, I.; Čanađija, M. Casting Defects Detection in Aluminum Alloys Using Deep Learning: A Classification Approach. Int. J. Met. 2022. [Google Scholar] [CrossRef]
- Habibpour, M.; Gharoun, H.; Tajally, A.; Shamsi, A.; Asgharnezhad, H.; Khosravi, A.; Nahavandi, S. An Uncertainty-Aware Deep Learning Framework for Defect Detection in Casting Products. arXiv 2021, arXiv:2107.11643. [Google Scholar] [CrossRef]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision And Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Li, Y.; Huang, H.; Xie, Q.; Yao, L.; Chen, Q. Research on a surface defect detection algorithm based on MobileNet-SSD. Appl. Sci. 2018, 8, 1678. [Google Scholar] [CrossRef] [Green Version]
- Rabano, S.L.; Cabatuan, M.K.; Sybingco, E.; Dadios, E.P.; Calilung, E.J. Common garbage classification using mobilenet. In Proceedings of the 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Baguio City, Philippines, 29 November–2 December 2018; pp. 1–4. [Google Scholar]
- Michele, A.; Colin, V.; Santika, D.D. Mobilenet convolutional neural networks and support vector machines for palmprint recognition. Procedia Comput. Sci. 2019, 157, 110–117. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.-K.; Woo, W.-C. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Adv. Neural Inf. Process. Syst. 2015, arXiv:1506.04214. [Google Scholar]
- Bao, Y.; Song, K.; Liu, J.; Wang, Y.; Yan, Y.; Yu, H.; Li, X. Triplet-graph reasoning network for few-shot metal generic surface defect segmentation. IEEE Trans. Instrum. Meas. 2021, 70, 1–11. [Google Scholar] [CrossRef]
- Dabhi, R. Casting Product Image Data for Quality Inspection. Available online: https://www.kaggle.com/datasets/ravirajsinh45/real-life-industrial-dataset-of-casting-product (accessed on 12 August 2022).
- Tang, S.; He, F.; Huang, X.; Yang, J. Online PCB defect detector on a new PCB defect dataset. arXiv 2019, arXiv:1902.06197. [Google Scholar]
- Paladi, S. Mechanic Component Images (Normal/Defected) Dataset. Available online: https://www.kaggle.com/datasets/satishpaladi11/mechanic-component-images-normal-defected (accessed on 12 August 2022).
- Anvar, A.; Cho, Y.I. Automatic metallic surface defect detection using shuffledefectnet. J. Korea Soc. Comput. Inf. 2020, 25, 19–26. [Google Scholar]
- Boudiaf, A.; Benlahmidi, S.; Harrar, K.; Zaghdoudi, R. Classification of surface defects on steel strip images using convolution neural network and support vector machine. J. Fail. Anal. Prev. 2022, 22, 531–541. [Google Scholar] [CrossRef]
- Adibhatla, V.A.; Chih, H.-C.; Hsu, C.-C.; Cheng, J.; Abbod, M.F.; Shieh, J.-S. Defect detection in printed circuit boards using you-only-look-once convolutional neural networks. Electronics 2020, 9, 1547. [Google Scholar] [CrossRef]
- Khalilian, S.; Hallaj, Y.; Balouchestani, A.; Karshenas, H.; Mohammadi, A. Pcb defect detection using denoising convolutional autoencoders. In Proceedings of the 2020 International Conference on Machine Vision and Image Processing (MVIP), Qom, Iran, 18–20 February 2020; pp. 1–5. [Google Scholar]
- Kim, J.; Ko, J.; Choi, H.; Kim, H. Printed circuit board defect detection using deep learning via a skip-connected convolutional autoencoder. Sensors 2021, 21, 4968. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Cloutier, S.G. End-to-end deep learning framework for printed circuit board manufacturing defect classification. Sci. Rep. 2022, 12, 12559. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, G.; Wang, R.; Tang, S.; Su, H.; Cao, K. Intelligent fault diagnosis of hydraulic piston pump based on wavelet analysis and improved alexnet. Sensors 2021, 21, 549. [Google Scholar] [CrossRef]
- Tang, S.; Zhu, Y.; Yuan, S.; Li, G. Intelligent diagnosis towards hydraulic axial piston pump using a novel integrated CNN model. Sensors 2020, 20, 7152. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Zhu, Y.; Yuan, S. An adaptive deep learning model towards fault diagnosis of hydraulic piston pump using pressure signal. Eng. Fail. Anal. 2022, 138, 106300. [Google Scholar] [CrossRef]
- Lin, J.; Yao, Y.; Ma, L.; Wang, Y. Detection of a casting defect tracked by deep convolution neural network. Int. J. Adv. Manuf. Technol. 2018, 97, 573–581. [Google Scholar] [CrossRef]
Layer Type | Output Shape | Parameters |
---|---|---|
conv2d (Conv2D) | (None, 45, 45, 32) | 320 |
max_pooling2d | (None, 22, 22, 32) | 0 |
conv2d_1 (Conv2D) | (None, 11, 11, 64) | 18,496 |
max_pooling2d_1 | (None, 5, 5, 64) | 0 |
flatten (Flatten) | (None, 1600) | 0 |
dense (Dense) | (None, 128) | 204,928 |
dense_1 (Dense) | (None, 1) | 129 |
Kp | MCC | Accuracy | MSE | MSLE | |
---|---|---|---|---|---|
Inceptionv3 | 9.93 × 10−1 | 9.93 × 10−1 | 9.94 × 10−1 | 4.72 × 10−2 | 3.58 × 10−3 |
Custom | 9.99 × 10−1 | 9.95 × 10−1 | 9.94 × 10−1 | 4.21 × 10−2 | 3.49 × 10−3 |
DenseNet | 9.99 × 10−1 | 9.94 × 10−1 | 9.94 × 10−1 | 4.53 × 10−2 | 2.78 × 10−3 |
MobileNet | 9.94 × 10−1 | 9.98 × 10−1 | 9.93 × 10−1 | 3.17 × 10−2 | 2.34 × 10−3 |
Proposed | 9.99 × 10−1 | 1.00 × 10+00 | 1.00 × 10+00 | 3.47 × 10−4 | 3.48 × 10−6 |
Kp | MCC | Accuracy | MSE | MSLE | |
---|---|---|---|---|---|
Custom | 8.51 × 10−1 | 8.61 × 10−1 | 9.43 × 10−1 | 5.71 × 10−2 | 2.75 × 10−2 |
Inceptionv3 | 7.90 × 10−1 | 7.90 × 10−1 | 9.14 × 10−1 | 8.57 × 10−2 | 4.12 × 10−2 |
Xception | 9.66 × 10−1 | 9.66 × 10−1 | 9.86 × 10−1 | 1.43 × 10−2 | 6.87 × 10−3 |
Densenet | 7.46 × 10−1 | 7.79 × 10−1 | 9.10 × 10−1 | 1.00 × 10−1 | 4.61 × 10−2 |
MobileNet | 7.66 × 10−1 | 7.69 × 10−1 | 9.00 × 10−1 | 1.00 × 10−1 | 4.81 × 10−2 |
Proposed | 9.80 × 10−1 | 9.72 × 10−1 | 9.49 × 10−1 | 2.89 × 10−2 | 2.93 × 10−2 |
Kp | MCC | Accuracy | MSE | MSLE | |
---|---|---|---|---|---|
Custom | 9.88 × 10−1 | 9.88 × 10−1 | 9.94 × 10−1 | 5.59 × 10−3 | 2.69 × 10−3 |
Inceptionv3 | 9.88 × 10−1 | 9.88 × 10−1 | 9.94 × 10−1 | 5.59 × 10−3 | 2.69 × 10−3 |
Xception | 9.91 × 10−1 | 9.91 × 10−1 | 9.96 × 10−1 | 4.20 × 10−3 | 2.02 × 10−3 |
DenseNet | 9.85 × 10−1 | 9.94 × 10−1 | 9.93 × 10−1 | 4.53 × 10−2 | 2.78 × 10−3 |
MobileNet | 9.88 × 10−1 | 9.88 × 10−1 | 9.94 × 10−1 | 5.59 × 10−3 | 2.69 × 10−3 |
Proposed | 9.98 × 10−1 | 1.00 × 10+00 | 1.00 × 10+00 | 6.70 × 10−6 | 7.80 × 10−8 |
Kp | MCC | Accuracy | MSE | MSLE | |
---|---|---|---|---|---|
Custom | 8.52 × 10−1 | 7.83 × 10−1 | 8.39 × 10−1 | 2.76 × 10−1 | 1.66 × 10−1 |
Inceptionv3 | 9.44 × 10−1 | 9.45 × 10−1 | 9.72 × 10−1 | 2.78 × 10−2 | 1.34 × 10−2 |
Xception | 7.97 × 10−1 | 8.11 × 10−1 | 8.96 × 10−1 | 4.72 × 10−1 | 2.40 × 10−1 |
DenseNet | 7.78 × 10−1 | 7.79 × 10−1 | 8.89 × 10−1 | 1.11 × 10−1 | 5.34 × 10−2 |
MobileNet | 9.00 × 10−1 | 9.03 × 10−1 | 9.50 × 10−1 | 5.00 × 10−2 | 2.40 × 10−2 |
Proposed | 9.78 × 10−1 | 9.78 × 10−1 | 9.89 × 10−1 | 1.11 × 10−2 | 5.34 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stephen, O.; Madanian, S.; Nguyen, M. A Robust Deep Learning Ensemble-Driven Model for Defect and Non-Defect Recognition and Classification Using a Weighted Averaging Sequence-Based Meta-Learning Ensembler. Sensors 2022, 22, 9971. https://doi.org/10.3390/s22249971
Stephen O, Madanian S, Nguyen M. A Robust Deep Learning Ensemble-Driven Model for Defect and Non-Defect Recognition and Classification Using a Weighted Averaging Sequence-Based Meta-Learning Ensembler. Sensors. 2022; 22(24):9971. https://doi.org/10.3390/s22249971
Chicago/Turabian StyleStephen, Okeke, Samaneh Madanian, and Minh Nguyen. 2022. "A Robust Deep Learning Ensemble-Driven Model for Defect and Non-Defect Recognition and Classification Using a Weighted Averaging Sequence-Based Meta-Learning Ensembler" Sensors 22, no. 24: 9971. https://doi.org/10.3390/s22249971