Genetic Algorithm-Based Grouping Strategy for IEEE 802.11ah Networks
Abstract
:1. Introduction
- To propose a genetic algorithm adapted for managing the grouping in IEEE 802.11ah networks operating under the RAW mechanism;
- To provide the tuning and validation of GA parameters (including all the GA phases) to obtain the best performance of the algorithm;
- To propose a fitness function that reduces the computational time of the algorithm;
- To evaluate the GA-based grouping proposal using a more constrained device, a Raspberry Pi 3B+;
- To provide a comparison of the proposed GA-based grouping strategy with other grouping methods.
2. Related Work on RAW Station Grouping
3. Problem Definition and Methodology: A Grouping Strategy for IEEE 802.11ah Based on a Genetic Algorithm
Algorithm 1. GA working procedure. |
Initialize population; Apply fitness function for population evaluation; Generation = 0; while termination criterion is not satisfied { Select good individuals through parent selection function; Parent reproduction through crossover function; Apply mutation function; Apply fitness function for population evaluation; Generation = Generation + 1; } return the best individual shown during the evolution; |
3.1. Fitness Value Computation
3.2. Parent Selection
3.3. Crossover Function
3.4. Mutation Function
4. Evaluation
4.1. Initial GA Parameter Setting
4.2. New method for Fitness Computation
4.3. Tuning of Parent Selection, Crossover and Mutation Methods
4.3.1. Parent Selection
4.3.2. Crossover Evaluation
4.3.3. Mutation Evaluation
4.4. Test over Raspberry Pi
4.5. Grouping Strategy Comparison
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IEEE Std 802.11; IEEE Standard for Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks-Specific Requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 2: Sub 1 GHz License Exempt Operation. IEEE Standards Association: Piscataway, NJ, USA, 2007.
- IndustryARC. Wifi HaLoW Devices Market Forecast (2022–2027); Report ESR0678; IndustryARC: Hyderabad, India, 2022. [Google Scholar]
- Baños-Gonzalez, V.; Afaqui, M.; Lopez-Aguilera, E.; Garcia-Villegas, E. IEEE 802.11ah: A Technology to Face the IoT Challenge. Sensors 2016, 16, 1960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bianchi, G. Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J. Sel. Areas Commun. 2000, 18, 535–547. [Google Scholar] [CrossRef]
- Sivanandam, S.N.; Deepa, S. Introduction to Genetic Algorithms; Springer: Berlin/Heidelberg, Germany, 2008; ISBN 978-3-540-73189-4. [Google Scholar]
- Tian, L.; Famaey, J.; Latré, S. Evaluation of the IEEE 802.11ah Restricted Access Window mechanism for dense IoT networks. In Proceedings of the IEEE 17th International Symposium on A World of Wireless Mobile and Multimedia Networks (WoWMoM), Coimbra, Portugal, 21–24 June 2016. [Google Scholar]
- Tian, L.; Santi, S.; Seferagić, A.; Lan, J.; Famaey, J. Wi-Fi HaLow for the Internet of Things: An up-to-date survey on IEEE 802.11ah research. J. Netw. Comput. Appl. 2021, 182, 103036. [Google Scholar] [CrossRef]
- Chang, T.-C.; Lin, C.-H.; Lin, K.-J.; Chen, W.-T. Load-Balanced Sensor Grouping for IEEE 802.11ah Networks. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA, 6–10 December 2015. [Google Scholar]
- Chang, T.C.; Lin, C.H.; Lin, K.J.; Chen, W.T. Traffic-Aware Sensor Grouping for IEEE 802.11ah Networks: Regression Based Analysis and Design. IEEE Trans. Mob. Comput. 2019, 18, 674–687. [Google Scholar] [CrossRef]
- Tian, L.; Khorov, E.; Latré, S.; Famaey, J. Real-Time Station Grouping under Dynamic Traffic for IEEE 802.11ah. Sensors 2017, 17, 1559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, L.; Santi, S.; Latré, S.; Famaey, J. Accurate Sensor Traffic Estimation for Station Grouping in Highly Dense IEEE 802.11ah Networks. In Proceedings of the ACM International Workshop on the Engineering of Reliable, Robust, and Secure Embedded Wireless Sensing Systems (FAILSAFE), Madeira, Portugal, 15–18 November 2017. [Google Scholar]
- Ahmed, N.; Hussain, M. Periodic Traffic Scheduling for IEEE 802.11ah Networks. IEEE Commun. Lett. 2020, 24, 1510–1513. [Google Scholar] [CrossRef]
- Nawaz, N.; Hafeez, M.; Zaidi, S.R.; McLernon, D.; Ghogho, M. Throughput Enhancement of Restricted Access Window for Uniform Grouping Scheme in IEEE 802.11ah. In Proceedings of the IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017. [Google Scholar]
- Heusse, M.; Rousseau, F.; Berger-Sabbatel, G.; Duda, A. Performance anomaly of 802.11b. In Proceedings of the IEEE INFOCOM, San Franciso, CA, USA, 30 March–3 April 2003. [Google Scholar]
- Sangeetha, U.; Babu, A. Fair and efficient resource allocation in IEEE 802.11ah WLAN with heterogeneous data rates. Comput. Commun. 2020, 151, 154–164. [Google Scholar] [CrossRef]
- Mahesh, M.; Pavan, B.; Harigovindan, V. Data rate-based grouping using machine learning to improve the aggregate throughput of IEEE 802.11ah multi-rate IoT networks. In Proceedings of the IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), New Delhi, India, 14–17 December 2020. [Google Scholar]
- Lakshmi, L.R.; Sikdar, B. Achieving Fairness in IEEE 802.11ah Networks for IoT Applications with Different Requirements. In Proceedings of the IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019. [Google Scholar]
- Mosavat-Jahromi, H.; Li, Y.; Cai, A. Throughput Fairness-based Grouping Strategy for Dense IEEE 802.11ah Networks. In Proceedings of the Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Istanbul, Turkey, 8–11 September 2019. [Google Scholar]
- Lopez-Aguilera, E.; Casademont, J.; Garcia-Villegas, E. A study on the influence of transmission errors on WLAN IEEE 802.11 MAC performance. Wirel. Commun. Mob. Comput. 2011, 11, 1376–1391. [Google Scholar] [CrossRef]
- Baños-Gonzalez, V.; Lopez-Aguilera, E.; Garcia-Villegas, E. E-model: An analytical tool for fast adaptation of IEEE 802.11ah RAW grouping strategies. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Taipei, Taiwan, 7–11 December 2020. [Google Scholar]
- Jain, R.; Chiu, D.; Hawe, W. A Quantitative Measure of Fairness and Discrimination for Resource Allocation in Shared Computer Systems; DEC Research Report TR-301; Eastern Research Laboratory, Digital Equipment Corporation: Hudson, MA, USA, 1984. [Google Scholar]
- Lipowski, A.; Lipowska, D. Roulette-wheel selection via stochastic acceptance. Phys. A Stat. Mech. Its Appl. 2012, 391, 2193–2196. [Google Scholar] [CrossRef] [Green Version]
- Baker, J.K. Reducing bias and inefficiency in the selection algorithm. In Proceedings of the 2nd International Conference on Genetic Algorithms and their Application, Cambridge, MA, USA, 28–31 July 1987. [Google Scholar]
- Bäck, T.; Fogel, D.B. Michalewicz, Evolutionary Computation 1: Basic Algorithms and Operators; Taylor & Francis Group: Oxfordshire, UK, 2000; ISBN 978-0-7503-0664-5. [Google Scholar]
- Phyu, S.P.; Srijuntongsiri, G. Effect of the number of parents on the performance of multi-parent genetic algorithm. In Proceedings of the 11th International Conference on Knowledge, Information and Creativity Support Systems (KICSS), Yogyakarta, Indonesia, 10–12 November 2016. [Google Scholar]
- Gwiazda, T.D. Genetic Algorithms Reference Vol.1 Crossover for Single-Objective Numerical Optimization Problems; TomaszGwiazda E-Books: Lomianki, Poland, 2006; ISBN 978-83-923958-1-2. [Google Scholar]
- Rimcharoen, S.; Leelathakul, N. Ring-based crossovers in Genetic Algorithms: Characteristic decomposition and their generalization. IEEE Access 2021, 9, 137902–137922. [Google Scholar] [CrossRef]
- Abdoun, O.; Abouchabaka, J.; Tajani, C. Analyzing the performance of mutation operators to solve the travelling salesman problem. arXiv 2012, arXiv:1203.3099. [Google Scholar]
- Liu, C.; Kroll, A. Performance impact of mutation operators of a subpopulation-based genetic algorithm for multi-robot task allocation problems. SpringerPlus 2016, 5, 1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, E.; Viamonte, D.; Vidal, R.; Paradells, J. Achievable Bandwidth Estimation for Stations in Multi-Rate IEEE 802.11 WLAN Cells. In Proceedings of the IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), Espoo, Finland, 18–21 June 2007. [Google Scholar]
- Qutab-ud-Din, M.; Hazmi, A.; Del Carpio, L.F.; Gökceoglu, A.; Badihi, B.; Amin, P.; Larmo, A.; Valkama, M. Duty Cycle Challenges of IEEE 802.11ah Networks in M2M and IoT Applications. In Proceedings of the European Wireless, Oulu, Finland, 18–20 May 2016. [Google Scholar]
- Seferagić, A.; Famaey, J.; De Poorter, E.; Hoebeke, J. Survey on Wireless Technology Trade-Offs for the Industrial Internet of Things. Sensors 2020, 20, 488. [Google Scholar] [CrossRef] [PubMed]
Cases | Description |
---|---|
X RNDSTA FIX Y IND | X STAs with random MCS. Population of Y individuals, one is fixed. |
X RNDSTA RND | X STAs with random MCS. Random population of 20 individuals. |
X STA FIX Y IND | X STAs with X/11 STAs per MCS (MCS 0 to 11). Population of Y individuals, one is fixed. |
X STA RND | X STAs with X/11 STAs per MCS (MCS 0 to 11). Random population of 20 individuals. |
Cases | Diff. Best Individual (%) | Diff. All Individuals (%) |
---|---|---|
33 STA RND 20 IND | 1.76 | 2.11 |
33 STA FIX 15 IND | 1.17 | 1.20 |
33 RNDSTA RND 20 IND | 2.15 | 2.33 |
33 RNDSTA FIX 15 IND | 2.44 | 2.50 |
55 STA RND 20 IND | 0.83 | 0.57 |
55 STA FIX 15 IND | 0.32 | 0.39 |
55 RNDSTA FIX 15 IND | 0.95 | 0.94 |
Cases | Original (s) | New (s) |
---|---|---|
33 STA RND 20 IND | 4050.445 | 0.684 |
33 STA FIX 15 IND | 4666.563 | 0.409 |
33 RNDSTA RND 20 IND | 4186.109 | 0.682 |
33 RNDSTA FIX 15 IND | 2898.486 | 0.400 |
55 STA RND 20 IND | 6288.776 | 1.009 |
55 STA FIX 15 IND | 4666.563 | 0.616 |
55 RNDSTA FIX 15 IND | 4353.809 | 0.640 |
Fitness | Crossover | Mutation | Time (s) |
---|---|---|---|
Original | Original | Original | 70,261.848 |
New (Section 4.2) | Original | Original | 7.737 |
New (Section 4.2) | Original | RSM | 7.486 |
New (Section 4.2) | Single-Point | Original | 5.621 |
New (Section 4.2) | Single-Point | RSM | 5.145 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Villegas, E.; Lopez-Garcia, A.; Lopez-Aguilera, E. Genetic Algorithm-Based Grouping Strategy for IEEE 802.11ah Networks. Sensors 2023, 23, 862. https://doi.org/10.3390/s23020862
Garcia-Villegas E, Lopez-Garcia A, Lopez-Aguilera E. Genetic Algorithm-Based Grouping Strategy for IEEE 802.11ah Networks. Sensors. 2023; 23(2):862. https://doi.org/10.3390/s23020862
Chicago/Turabian StyleGarcia-Villegas, Eduard, Alejandro Lopez-Garcia, and Elena Lopez-Aguilera. 2023. "Genetic Algorithm-Based Grouping Strategy for IEEE 802.11ah Networks" Sensors 23, no. 2: 862. https://doi.org/10.3390/s23020862
APA StyleGarcia-Villegas, E., Lopez-Garcia, A., & Lopez-Aguilera, E. (2023). Genetic Algorithm-Based Grouping Strategy for IEEE 802.11ah Networks. Sensors, 23(2), 862. https://doi.org/10.3390/s23020862