Model-Driven Engineering Techniques and Tools for Machine Learning-Enabled IoT Applications: A Scoping Review
Abstract
:1. Introduction
2. Background
2.1. Model-Driven Engineering (MDE)
2.2. Internet of Things (IoT)
2.3. Data Analytics and Machine Learning (DAML)
3. Related Work
4. Research Methodology
4.1. Identify the Research Questions (Stage-1)
4.2. Identify Relevant Studies (Stage-2)
4.3. Select Relevant Studies (Stage-3)
4.4. Chart the Data (Stage-4)
4.5. Summarize and Report the Results (Stage-5)
5. Results Analysis
5.1. What Is the Current State of MDE Languages and Tools for Developing IoT Applications? (RQ1)
5.2. What Application Domains Are These MDE Approaches Applied to? (RQ2)
5.3. What DAML Techniques Are Supported by These MDE Approaches? (RQ3)
6. Discussion
6.1. Main Findings
6.2. Study Limitations
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
PID | Study | Title | Year | Type | Country | Name of Journal/Conference | Number of Authors |
---|---|---|---|---|---|---|---|
P1 | [46] | A model-driven approach to machine learning and software modeling for the IoT | 2022 | Journal | Germany, Belgium | SoSyM | 4 |
P2 | [47] | IoT efficient data exploitation process using Model Driven Engineering | 2022 | Conference | France | ICC | 5 |
P3 | [48] | A Domain-Specific Language for Modeling IoT System Architectures That Support Monitoring | 2022 | Journal | Argentina, Ecuador | lEEE Access | 4 |
P4 | [49] | Supporting AI Engineering on the IoT Edge through Model-Driven TinyML | 2022 | Conference | Germany, Belgium, United Kingdom | COMPSAC | 4 |
P5 | [50] | SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments on FIWARE | 2022 | Journal | Spain | IEEE Access | 4 |
P6 | [51] | A Model-Driven Methodology to Accelerate Software Engineering in the Internet of Things | 2022 | Journal | France, Canada, Luxembourg | IoT-J | 4 |
P7 | [52] | Designing and simulating IoT environments by using a model-driven approach | 2022 | Conference | Spain | CISTI | 2 |
P8 | [53] | MontiThings:Model-Driven Development and Deployment of Reliable IoT Applications | 2022 | Journal | Germany | JSS | 4 |
P9 | [54] | HealMA: a model-driven framework for automatic generation of IoT-based Android health monitoring applications | 2022 | Journal | Iran, Canada | ASE | 3 |
P10 | [55] | Towards a modeling and analysis environment for industrial IoT systems | 2021 | Workshop | Italy | CEUR | 4 |
P11 | [56] | FTG+PM for the Model-Driven Development of Wireless Sensor Network based IoT Systems | 2021 | Conference | Belgium, Canada | MODELS | 3 |
P12 | [57] | A Model-Driven Framework for Early Analysis of Kill Chain Attacks | 2021 | Conference | Pakistan, Saudi-Arabia | NCCC | 5 |
P13 | [58] | SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments | 2021 | Journal | Spain | IEEE Access | 4 |
P14 | [59] | An approach to integrate IoT systems with no-web interfaces | 2021 | Conference | Spain | ICITS | 3 |
P15 | [60] | MoSIoT: Modeling and Simulating IoT Healthcare-Monitoring Systems for People with Disabilities | 2021 | Journal | Spain | IJERPH | 4 |
P16 | [61] | FaultFlow: A tool supporting an MDE approach for Timed Failure Logic Analysis | 2021 | Conference | Italy | EDCC | 3 |
P17 | [62] | The Need for Model-driven Engineering in the Development of IoT Software for Public Transportation Systems | 2021 | Conference | Turkey | UYMS | 2 |
P18 | [63] | Model-driven Development for ESP-based IoT Systems | 2021 | Workshop | Belgium | SERP4IoT | 2 |
P19 | [64] | Analyzing WSN-based IoT Systems Analyzing WSN-based IoT Systems using MDE Techniques and Petri-net Models | 2020 | Conference | Belgium | MODELS | 4 |
P20 | [65] | A Model-Driven Approach to Unravel the Interoperability Problem of the Internet of Things | 2020 | Conference | France, Canada | AINA | 5 |
P21 | [66] | IoTSuite: A ToolSuite for Prototyping Internet of Things Applications. | 2020 | Workshop | Spain | AINA | 4 |
P22 | [10] | A model-driven engineering approach for the service integration of IoT systems | 2020 | Journal | Spain | Cluster computing | 5 |
P23 | [8] | AutoIoT: a Framework based on User-driven MDE for Generating IoT Applications | 2020 | Conference | Germany | SAC | 3 |
P24 | [67] | A Model-Driven Approach for IoT-Based Monitoring Systems in Industry 4.0 | 2020 | Conference | Iran | SCIOT | 3 |
P25 | [68] | A Conceptual Data Model and Its Automatic Implementation for IoT-Based Business Intelligence Applications | 2020 | Journal | France, China, Colombia | IoT-J | 9 |
P26 | [69] | An Application Development Framework for Internet-of-Things Service Orchestration | 2020 | Journal | China, Saudi-Arabia, South-Korea, Australia | IoT-J | 6 |
P27 | [70] | A Model-Driven Framework for Ensuring Role Based Access Control in IoT Devices. | 2020 | Conference | Pakistan | ICCAI | 4 |
P28 | [71] | BRAIN-IoT: Model-Based Framework for Dependable Sensing and Actuation in Intelligent Decentralized IoT Systems | 2019 | Conference | Italy, Spain | IoT-J | 6 |
P29 | [72] | Modeling SOA-Based IoT Applications with SoaML4IoT | 2019 | Conference | Brazil | WF-IoT | 3 |
P30 | [73] | Towards privacy-preserving IoT systems using model-driven engineering | 2019 | Workshop | Germany | MODELS | 4 |
P31 | [69] | A Model-Driven Approach for Load-Balanced MQTT Protocol in the Internet of Things ( IoT ) | 2019 | Conference | Pakistan, Saudi Arabia. | CISIS | 4 |
P32 | [74] | Cypriot: Framework for modelling and controlling network-based IoT applications | 2019 | Conference | Canada, France | SAC | 5 |
P33 | [75] | The next evolution of MDE: a seamless integration of machine learning into domain modeling | 2019 | Journal | Luxembourg | SoSyM | 4 |
P34 | [76] | Model-driven evidence-based privacy risk control in trustworthy smart IoT systems | 2019 | Workshop | Spain, France | CEUR-WS.org | 4 |
P35 | [77] | Applying model driven engineering techniques to the development of Contiki-based IoT systems | 2019 | Workshop | Turkey | SERP4IoT | 6 |
P36 | [78] | A model-driven approach for the integration of hardware nodes in the IoT | 2019 | Conference | Spain | WorldCIST | 3 |
P37 | [79] | Enabling Model-Driven Software Development Tools for the Internet of Things | 2019 | Workshop | Canada | MiSE | 2 |
P38 | [80] | Semiotics: Semantic model-driven development for IoT interoperability of emergency services | 2019 | Conference | Netherland | ISCRAM | 1 |
P39 | [81] | SiMoNa:A Proof-of-concept Domain-Specific Modeling Language for IoT Infographics | 2018 | Conference | Brazil, Ireland | ISCRAM | 4 |
P40 | [82] | Towards an IoT-based Framework for Evolvable Assembly Systems | 2018 | Conference | Greece | IFAC | 3 |
P41 | [83] | A Methodology Based on Model-Driven Engineering for IoT Application Development | 2018 | Conference | Mexico | ICDS | 3 |
P42 | [84] | A Model-Driven Workflow for Energy-Aware Scheduling Analysis of IoT-Enabled Use Cases | 2018 | Journal | Germany | IoT-J | 2 |
P43 | [85] | A model-based approach for managing criticality requirements in e-health IoT systems | 2018 | Conference | Qatar, Greece | SoSE | 6 |
P44 | [86] | A Model-Driven Approach for Access Control in the Internet of Things (IoT) Applications UMLOA | 2018 | Conference | Pakistan | ICIST | 5 |
P45 | [87] | A Reactive and Model-Based Approach for Developing Internet-of-Things Systems | 2018 | Conference | Portugal | QUATIC | 3 |
P46 | [88] | A modeling domain-specific language for IoT-enabled operating systems | 2017 | Conference | Portugal | InIECON | 7 |
P47 | [89] | SmartHomeML: Towards a domain-specific modeling language for creating smart home applications | 2017 | Conference | Iceland, Canada | ICIOT | 4 |
P48 | [90] | A Domain Specific Language for Smart Cities | 2017 | Journal | Spain | MDPI Proceedings | 3 |
P49 | [91] | A framework for MDE of IoT-Based Manufacturing Cyber-Physical Systems | 2017 | Conference | Greece | IoT | 3 |
P50 | [92] | Modelling Contiki-Based IoT Systems | 2017 | Conference | Turkey | SLATE | 4 |
P51 | [93] | Model-Based Software Engineering to Tame the IoT Jungle | 2017 | Journal | Norway | IEEE Software | 3 |
P52 | [94] | IoTA-MD: A model-driven approach for applying QoS attributes in the development of the IoT systems | 2017 | Conference | Brazil | SAC | 3 |
P53 | [91] | A framework for MDE of IoT-Based Manufacturing Cyber-Physical Systems | 2017 | Conference | Greece | IoT | 3 |
P54 | [16] | Model-driven development of user interfaces for IoT systems via domain-specific components and patterns | 2017 | Journal | Italy | JISA | 3 |
P55 | [95] | A Model-Driven Methodology for the Design of Autonomic and Cognitive IoT-Based Systems: Application to Healthcare | 2017 | Journal | France | TETCI | 3 |
P56 | [96] | An IoT domain meta-model and an approach to software development of IoT solutions | 2017 | Conference | Tunisia | IINTEC | 3 |
P57 | [97] | Model-driven approach for body area network application development | 2016 | Journal | Lithuania | MDPI Sensors | 4 |
P58 | [97] | A model-driven framework to develop personalized health monitoring | 2016 | Journal | Lithuania | MDPI Symmetry | 4 |
P59 | [98] | A model-driven engineering approach for the well-being of ageing people | 2016 | Conference | Belgium | ER | 4 |
P60 | [99] | Design and Analysis of IoT Applications: A Model-Driven Approach | 2016 | Conference | Brazil, Australia | DASC/ PiCom/ DataCom/ CyberSciTech | 5 |
P61 | [100] | Supporting the Internet of Things with Model-Driven Engineering | 2016 | Conference | Sweden | IDC | 2 |
P62 | [101] | A model-driven architecture-based data quality management framework for the Internet of Things | 2016 | Conference | Morocco, France | CloudTech | 4 |
P63 | [102] | Model-driven interoperability: engineering heterogeneous IoT systems | 2015 | Journal | UK | Annals of Telecommunications | 3 |
P64 | [103] | A model-based approach across the IoT lifecycle for scalable and distributed smart applications | 2015 | Conference | Italy | ITSC | 3 |
P65 | [104] | A Framework for Model-driven IoT Application Development | 2015 | Conference | Germany | WF-IoT | 4 |
P66 | [105] | Design of a domain-specific language and IDE for Internet of things applications | 2015 | Conference | Bosnia-Herzegovina | MIPRO | 4 |
P67 | [106] | IoTLink: An Internet of Things Prototyping Toolkit. 2014 | 2014 | Conference | Germany, Brazil | UIC-ATC | 7 |
P68 | [107] | Model-driven development for data-centric sensor network applications | 2011 | Conference | Germany | MoMM | 3 |
References
- Munirathinam, S. Industry 4.0: Industrial internet of things (IIOT). In Advances in Computers; Elsevier: Amsterdam, The Netherlands, 2020; Volume 117, pp. 129–164. [Google Scholar]
- Hassija, V.; Chamola, V.; Saxena, V.; Jain, D.; Goyal, P.; Sikdar, B. A survey on IoT security: Application areas, security threats, and solution architectures. IEEE Access 2019, 7, 82721–82743. [Google Scholar] [CrossRef]
- Lee, I.; Lee, K. The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Bus. Horiz. 2015, 58, 431–440. [Google Scholar] [CrossRef]
- Akkaş, M.A.; Sokullu, R.; Çetin, H.E. Healthcare and patient monitoring using IoT. Internet Things 2020, 11, 100173. [Google Scholar] [CrossRef]
- Katare, G.; Padihar, G.; Qureshi, Z. Challenges in the integration of artificial intelligence and internet of things. Int. J. Syst. Softw. Eng. 2018, 6, 10–15. [Google Scholar]
- Verma, S.; Kawamoto, Y.; Fadlullah, Z.M.; Nishiyama, H.; Kato, N. A survey on network methodologies for real-time analytics of massive IoT data and open research issues. IEEE Commun. Surv. Tutor. 2017, 19, 1457–1477. [Google Scholar] [CrossRef]
- Tsai, C.W.; Lai, C.F.; Chiang, M.C.; Yang, L.T. Data mining for internet of things: A survey. IEEE Commun. Surv. Tutor. 2013, 16, 77–97. [Google Scholar] [CrossRef]
- Nepomuceno, T.; Carneiro, T.; Maia, P.H.; Adnan, M.; Nepomuceno, T.; Martin, A. AutoIoT: A framework based on user-driven MDE for generating IoT applications. In Proceedings of the 35th Annual ACM Symposium on Applied Computing, Virtual, 30 March–3 April 2020; pp. 719–728. [Google Scholar]
- Ciccozzi, F.; Crnkovic, I.; Di Ruscio, D.; Malavolta, I.; Pelliccione, P.; Spalazzese, R. Model-driven engineering for mission-critical iot systems. IEEE Softw. 2017, 34, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Alulema, D.; Criado, J.; Iribarne, L.; Fernández-García, A.J.; Ayala, R. A model-driven engineering approach for the service integration of IoT systems. Clust. Comput. 2020, 23, 1937–1954. [Google Scholar] [CrossRef]
- Frank, U. Domain-specific modeling languages: Requirements analysis and design guidelines. In Domain Engineering; Springer: Berlin/Heidelberg, Germany, 2013; pp. 133–157. [Google Scholar]
- Jácome-Guerrero, S.P.; Ferreira, M.; Corral, A. Software development tools in model-driven engineering. In Proceedings of the 2017 5th International Conference in Software Engineering Research and Innovation (CONISOFT), Merida, Mexico, 25–27 October 2017; pp. 140–148. [Google Scholar]
- Iung, A.; Carbonell, J.; Marchezan, L.; Rodrigues, E.; Bernardino, M.; Basso, F.P.; Medeiros, B. Systematic mapping study on domain-specific language development tools. Empir. Softw. Eng. 2020, 25, 4205–4249. [Google Scholar] [CrossRef]
- Da Silva, A.R. Model-driven engineering: A survey supported by the unified conceptual model. Comput. Lang. Syst. Struct. 2015, 43, 139–155. [Google Scholar]
- Salman, A.J.; Al-Jawad, M.; Al Tameemi, W. Domain-specific languages for IoT: Challenges and opportunities. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Kerbala, Iraq, 5–6 December 2020; IOP Publishing: Bristol, UK, 2021; Volume 1067, p. 012133. [Google Scholar]
- Brambilla, M.; Cabot, J.; Wimmer, M. Model-driven software engineering in practice. Synth. Lect. Softw. Eng. 2017, 3, 1–207. [Google Scholar]
- Stahl, T.; Völter, M.; Czarnecki, K. Model-Driven Software Development: Technology, Engineering, Management; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Brown, A.W. Model driven architecture: Principles and practice. Softw. Syst. Model. 2004, 3, 314–327. [Google Scholar] [CrossRef]
- Schmidt, D.C. Model-driven engineering. Comput.-IEEE Comput. Soc. 2006, 39, 25. [Google Scholar] [CrossRef]
- Dias Neto, A.; Subramanyan, R.; Vieira, M.; Travassos, G. A survey on model-based testing approaches: A systematic review. Empir. Softw. Eng. 2020, 25, 4205–4249. [Google Scholar]
- Li, S.; Xu, L.D.; Zhao, S. The internet of things: A survey. Inf. Syst. Front. 2015, 17, 243–259. [Google Scholar] [CrossRef]
- Teixeira, T.; Hachem, S.; Issarny, V.; Georgantas, N. Service oriented middleware for the internet of things: A perspective. In Proceedings of the European Conference on a Service-Based Internet, Poznan, Poland, 26–28 October 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 220–229. [Google Scholar]
- Mehta, R.; Sahni, J.; Khanna, K. Internet of things: Vision, applications and challenges. Procedia Comput. Sci. 2018, 132, 1263–1269. [Google Scholar] [CrossRef]
- Sharma, S.K.; Wang, X. Live data analytics with collaborative edge and cloud processing in wireless IoT networks. IEEE Access 2017, 5, 4621–4635. [Google Scholar] [CrossRef]
- Ayodele, T.O. Types of machine learning algorithms. New Adv. Mach. Learn. 2010, 3, 19–48. [Google Scholar]
- Liu, Z.; Zhu, Z.; Gao, J.; Xu, C. Forecast methods for time series data: A survey. IEEE Access 2021, 9, 91896–91912. [Google Scholar] [CrossRef]
- Wolny, S.; Mazak, A.; Wally, B. An Initial Mapping Study on MDE4IoT. In Proceedings of the 2nd International Workshop on Model-Driven Engineering for the Internet-of-Things (MDE4IoT), 2018; pp. 524–529. [Google Scholar]
- Ihirwe, F.; Di Ruscio, D.; Mazzini, S.; Pierini, P.; Pierantonio, A. Low-code Engineering for Internet of things: A state of research. In Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings, Virtual Event, 18–23 October 2020; pp. 1–8. [Google Scholar]
- Muzaffar, A.W.; Mir, S.R.; Anwar, M.W.; Ashraf, A. Application of model driven engineering in cloud computing: A systematic literature review. In Proceedings of the Second International Conference on Internet of Things, Data and Cloud Computing, Cambridge, UK, 22–23 March 2017; pp. 1–6. [Google Scholar]
- Abshir Mohamed, M.; Kardas, G.; Challenger, M. Model-Driven Engineering Tools and Languages for Cyber-Physical Systems–A Systematic Literature Review. IEEE Access 2021, 9, 48605–48630. [Google Scholar] [CrossRef]
- Casalaro, G.L.; Cattivera, G.; Ciccozzi, F.; Malavolta, I.; Wortmann, A.; Pelliccione, P. Model-driven engineering for mobile robotic systems: A systematic mapping study. Softw. Syst. Model. 2021, 21, 1–31. [Google Scholar] [CrossRef]
- Mashkoor, A.; Egyed, A.; Wille, R. Model-driven engineering of safety and security systems: A systematic mapping study. arXiv 2020, arXiv:2004.08471. [Google Scholar]
- de Araújo Silva, E.; Valentin, E.; Carvalho, J.R.H.; da Silva Barreto, R. A survey of Model Driven Engineering in robotics. J. Comput. Lang. 2021, 62, 101021. [Google Scholar] [CrossRef]
- Ralph, P.; Baltes, S. Paving the Way for Mature Secondary Research: The Seven Types of Literature Review. arXiv 2022, arXiv:2205.01163. [Google Scholar]
- Peters, M.D.; Marnie, C.; Tricco, A.C.; Pollock, D.; Munn, Z.; Alexander, L.; McInerney, P.; Godfrey, C.M.; Khalil, H. Updated methodological guidance for the conduct of scoping reviews. JBI Evid. Synth. 2020, 18, 2119–2126. [Google Scholar] [CrossRef] [PubMed]
- Colquhoun, H.L.; Levac, D.; O’Brien, K.K.; Straus, S.; Tricco, A.C.; Perrier, L.; Kastner, M.; Moher, D. Scoping reviews: Time for clarity in definition, methods, and reporting. J. Clin. Epidemiol. 2014, 67, 1291–1294. [Google Scholar] [CrossRef]
- Arksey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 2015, 349, g7647. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, A.; de Sousa, L.; da Silva, A.R. Comparative analysis of workbenches to support DSMLs: Discussion with non-trivial Model-Driven Development needs. In Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development (MODELSWARD), Rome, Italy, 19–21 February 2016; pp. 323–330. [Google Scholar]
- Granada, D.; Vara, J.M.; Blanco, F.P.; Marcos, E. Model-based Tool Support for the Development of Visual Editors—A Systematic Mapping Study. In Proceedings of the 12th International Conference on Software Technologies, Madrid, Spain, 24–26 July 2017; pp. 330–337. [Google Scholar] [CrossRef]
- Pekar, A.; Mocnej, J.; Seah, W.K.; Zolotova, I. Application domain-based overview of IoT network traffic characteristics. ACM Comput. Surv. (CSUR) 2020, 53, 1–33. [Google Scholar] [CrossRef]
- Tian, S.; Yang, W.; Le Grange, J.M.; Wang, P.; Huang, W.; Ye, Z. Smart healthcare: Making medical care more intelligent. Glob. Health J. 2019, 3, 62–65. [Google Scholar] [CrossRef]
- Anthopoulos, L.G. Understanding the smart city domain: A literature review. Transform. City Gov. Success. Smart Cities 2015, 8, 9–21. [Google Scholar]
- Debnath, A.K.; Chin, H.C.; Haque, M.M.; Yuen, B. A methodological framework for benchmarking smart transport cities. Cities 2014, 37, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Moin, A. Data Analytics and Machine Learning Methods, Techniques and Tool for Model-Driven Engineering of Smart IoT Services. In Proceedings of the 2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion), Madrid, Spain, 25–28 May 2021; pp. 287–292. [Google Scholar]
- Moin, A.; Challenger, M.; Badii, A.; Günnemann, S. A model-driven approach to machine learning and software modeling for the IoT. Softw. Syst. Model. 2022, 21, 987–1014. [Google Scholar] [CrossRef]
- Terracher, A.; Kocik, R.; Hamouche, R.; Rachedi, A.; Bourouina, T. IoT efficient data exploitation process using Model Driven Engineering. In Proceedings of the ICC 2022-IEEE International Conference on Communications, Seoul, Republic of Korea, 16–20 May 2022; pp. 5268–5273. [Google Scholar]
- Erazo-Garzón, L.; Cedillo, P.; Rossi, G.H.; Moyano, J. A Domain-Specific Language for Modeling IoT System Architectures That Support Monitoring. IEEE Access 2022, 10, 61639–61665. [Google Scholar] [CrossRef]
- Moin, A.; Challenger, M.; Badii, A.; Günnemann, S. Supporting AI Engineering on the IoT Edge through Model-Driven TinyML. In Proceedings of the 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC), Los Alamitos, CA, USA, 27 June–1 July 2022; pp. 884–893. [Google Scholar]
- Barriga, J.A.; Clemente, P.J.; Hernández, J.; Pérez-Toledano, M.A. SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments on FIWARE. IEEE Access 2022, 10, 7800–7822. [Google Scholar] [CrossRef]
- Berrouyne, I.; Adda, M.; Mottu, J.M.; Tisi, M. A Model-Driven Methodology to Accelerate Software Engineering in the Internet of Things. IEEE Internet Things J. 2022, 9, 19757–19772. [Google Scholar] [CrossRef]
- Barriga, J.A.; Clemente, P.J. Designing and simulating IoT environments by using a model-driven approach. In Proceedings of the 2022 17th Iberian Conference on Information Systems and Technologies (CISTI), Madrid, Spain, 22–25 June 2022; pp. 1–6. [Google Scholar]
- Kirchhof, J.C.; Rumpe, B.; Schmalzing, D.; Wortmann, A. Montithings: Model-driven development and deployment of reliable iot applications. J. Syst. Softw. 2022, 183, 111087. [Google Scholar] [CrossRef]
- Mehrabi, M.; Zamani, B.; Hamou-Lhadj, A. HealMA: A model-driven framework for automatic generation of IoT-based Android health monitoring applications. Autom. Softw. Eng. 2022, 29, 1–41. [Google Scholar] [CrossRef] [PubMed]
- Ihirwe, F.; Di Ruscio, D.; Mazzini, S.; Pierantonio, A. Towards a modeling and analysis environment for industrial IoT systems. arXiv 2021, arXiv:2105.14136. [Google Scholar]
- Karaduman, B.; Mustafiz, S.; Challenger, M. FTG+ PM for the Model-Driven Development of Wireless Sensor Network based IoT Systems. In Proceedings of the 2021 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C), Fukuoka, Japan, 10–15 October 2021; pp. 306–316. [Google Scholar]
- Shirazi, S.S.B.; Rashid, M.; Azam, F.; Rasheed, Y.; Anwar, M.W. A Model-Driven Framework for Early Analysis of Kill Chain Attacks. In Proceedings of the 2021 National Computing Colleges Conference (NCCC), Taif, Saudi Arabia, 27–28 March 2021; pp. 1–5. [Google Scholar]
- Barriga, J.A.; Clemente, P.J.; Sosa-Sánchez, E.; Prieto, Á.E. SimulateIoT: Domain Specific Language to design, code generation and execute IoT simulation environments. IEEE Access 2021, 9, 92531–92552. [Google Scholar] [CrossRef]
- Alulema, D.; Criado, J.; Iribarne, L. An Approach to Integrate IoT Systems with No-Web Interfaces. In International Conference on Information Technology & Systems; Springer: Berlin/Heidelberg, Germany, 2021; pp. 417–427. [Google Scholar]
- Meliá, S.; Nasabeh, S.; Luján-Mora, S.; Cachero, C. MoSIoT: Modeling and Simulating IoT Healthcare-Monitoring Systems for People with Disabilities. Int. J. Environ. Res. Public Health 2021, 18, 6357. [Google Scholar] [CrossRef]
- Parri, J.; Sampietro, S.; Vicario, E. FaultFlow: A tool supporting an MDE approach for Timed Failure Logic Analysis. In Proceedings of the 2021 17th European Dependable Computing Conference (EDCC), Munich, Germany, 13–16 September 2021; pp. 25–32. [Google Scholar]
- Arslan, S.; Kardaş, G. The Need for Model-driven Engineering in the Development of IoT Software for Public Transportation Systems. In Proceedings of the 2021 15th Turkish National Software Engineering Symposium (UYMS), Izmir, Turkey, 17–19 November 2021; pp. 1–6. [Google Scholar]
- Karaduman, B.; Challenger, M. Model-driven development for ESP-based IoT systems. In Proceedings of the 2021 IEEE/ACM 3rd International Workshop on Software Engineering Research and Practices for the IoT (SERP4IoT), Madrid, Spain, 3 June 2021; pp. 9–12. [Google Scholar]
- Karaduman, B.; Challenger, M.; Eslampanah, R.; Denil, J.; Vangheluwe, H. Analyzing WSN-based IoT Systems using MDE Techniques and Petri-net Models. In STAF Workshops. 2020, pp. 35–46. Available online: http://www.es.mdh.se/MDE4IoT/mde4iot_p1.pdf (accessed on 13 December 2022).
- Berrouyne, I.; Adda, M.; Mottu, J.M.; Royer, J.C.; Tisi, M. A Model-Driven Approach to Unravel the Interoperability Problem of the Internet of Things. In International Conference on Advanced Information Networking and Applications; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1162–1175. [Google Scholar]
- Soukaras, D.; Patel, P.; Song, H.; Chaudhary, S. IoTSuite: A ToolSuite for prototyping internet of things applications. In The 4th International Workshop on Computing and Networking for Internet of Things (ComNet-IoT), Co-Located with 16th International Conference on Distributed Computing and Networking (ICDCN). 2015. Available online: https://www.researchgate.net/publication/273003282_IoTSuite_A_ToolSuite_for_Prototyping_Internet_of_Things_Applications (accessed on 13 December 2022).
- Ziaei, M.; Zamani, B.; Bohlooli, A. A Model-Driven Approach for IoT-Based Monitoring Systems in Industry 4.0. In Proceedings of the 2020 4th International Conference on Smart City, Internet of Things and Applications (SCIOT), Mashhad, Iran, 16–17 September 2020; pp. 99–105. [Google Scholar]
- Plazas, J.E.; Bimonte, S.; de Vaulx, C.; Schneider, M.; Nguyen, Q.D.; Chanet, J.P.; Shi, H.; Hou, K.M.; Corrales, J.C. A conceptual data model and its automatic implementation for IoT-based business intelligence applications. IEEE Internet Things J. 2020, 7, 10719–10732. [Google Scholar] [CrossRef]
- Anwer, H.; Azam, F.; Anwar, M.W.; Rashid, M. A model-driven approach for load-balanced MQTT protocol in internet of things (IoT). In Complex, Intelligent, and Software Intensive Systems: Proceedings of the 13th International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS-2019); Springer: Berlin/Heidelberg, Germany, 2020; pp. 368–378. [Google Scholar]
- Bisma, M.; Azam, F.; Rasheed, Y.; Anwar, M.W. A Model-Driven Framework for Ensuring Role Based Access Control in IoT Devices. In Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence, Honolulu, HI, USA, 18–20 September 2020; pp. 455–460. [Google Scholar]
- Conzon, D.; Rashid, M.R.A.; Tao, X.; Soriano, A.; Nicholson, R.; Ferrera, E. BRAIN-IoT: Model-based framework for dependable sensing and actuation in intelligent decentralized IoT systems. In Proceedings of the 2019 4th International Conference on Computing, Communications and Security (ICCCS), Rome, Italy, 10–12 October 2019; pp. 1–8. [Google Scholar]
- Costa, B.; Pires, P.F.; Delicato, F.C. Modeling SOA-based IoT applications with SoaML4IoT. In Proceedings of the 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick, Ireland, 15–18 April 2019; pp. 496–501. [Google Scholar]
- Michael, J.; Netz, L.; Rumpe, B.; Varga, S. Towards Privacy-Preserving IoT Systems Using Model Driven Engineering. In EMISA Forum; De Gruyter: Berlin, Germany, 2020. [Google Scholar]
- Berrouyne, I.; Adda, M.; Mottu, J.M.; Royer, J.C.; Tisi, M. CyprIoT: Framework for modelling and controlling network-based IoT applications. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, Limassol, Cyprus, 8–12 April 2019; pp. 832–841. [Google Scholar]
- Hartmann, T.; Moawad, A.; Fouquet, F.; Le Traon, Y. The next evolution of MDE: A seamless integration of machine learning into domain modeling. Softw. Syst. Model. (SoSyM) 2019, 18, 1285–1304. [Google Scholar] [CrossRef] [Green Version]
- Muntés-Mulero, V.; Dominiak, J.; González, E.; Sanchez-Charles, D. Model-driven Evidence-based Privacy Risk Control in Trustworthy Smart IoT Systems. In CEUR Workshop Proceedings. 2019; pp. 23–30. Available online: https://ceur-ws.org/Vol-2442/paper4.pdf (accessed on 13 December 2022).
- Asici, T.Z.; Karaduman, B.; Eslampanah, R.; Challenger, M.; Denil, J.; Vangheluwe, H. Applying model driven engineering techniques to the development of contiki-based IoT systems. In Proceedings of the 2019 IEEE/ACM 1st International Workshop on Software Engineering Research & Practices for the Internet of Things (SERP4IoT), Montreal, QC, Canada, 27 May 2019; pp. 25–32. [Google Scholar]
- Alulema, D.; Criado, J.; Iribarne, L. A model-driven approach for the integration of hardware nodes in the IoT. In World Conference on Information Systems and Technologies; Springer: Berlin/Heidelberg, Germany, 2019; pp. 801–811. [Google Scholar]
- Jahed, K.; Dingel, J. Enabling model-driven software development tools for the internet of things. In Proceedings of the 2019 IEEE/ACM 11th International Workshop on Modelling in Software Engineering (MiSE), Montreal, QC, Canada, 26–27 May 2019; pp. 93–99. [Google Scholar]
- Moreira, J.L. SEMIoTICS: Semantic Model-driven Development for IoT Interoperability of Emergency Services: Improving the Semantic Interoperability of IoT Early Warning Systems. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 2019. [Google Scholar]
- De Morais, C.M.; Kelner, J.; Sadok, D.; Lynn, T. SiMoNa: A proof-of-concept domain specific modeling language for IoT infographics. In Proceedings of the 2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), Lisbon, Portugal, 1–4 October 2018; pp. 199–203. [Google Scholar]
- Thramboulidis, K.; Kontou, I.; Vachtsevanou, D.C. Towards an IoT-based framework for evolvable assembly systems. IFAC-PapersOnLine 2018, 51, 182–187. [Google Scholar] [CrossRef]
- Sosa-Reyna, C.M.; Tello-Leal, E.; Lara-Alabazares, D.; Mata-Torres, J.A.; Lopez-Garza, E. A Methodology Based on Model-Driven Engineering for IoT Application Development. In Proceedings of the 12th International Conference on Digital Society and eGovernments (ICDS 2018), Rome, Italy, 25–29 March 2018. [Google Scholar]
- Iyenghar, P.; Pulvermueller, E. A model-driven workflow for energy-aware scheduling analysis of IoT-enabled use cases. IEEE Internet Things J. 2018, 5, 4914–4925. [Google Scholar] [CrossRef]
- Kotronis, C.; Nikolaidou, M.; Dimitrakopoulos, G.; Anagnostopoulos, D.; Amira, A.; Bensaali, F. A model-based approach for managing criticality requirements in e-health iot systems. In Proceedings of the 2018 13th annual conference on system of systems engineering (SoSE), Paris, France, 19–22 June 2018; pp. 60–67. [Google Scholar]
- Khan, M.; Anwar, M.W.; Azam, F.; Samea, F.; Shinwari, M.F. A Model-Driven Approach for Access Control in Internet of Things (IoT) Applications—An Introduction to UMLOA. In Proceedings of the International Conference on Information and Software Technologies, Vilnius, Lithuania, 4–6 October 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 198–209. [Google Scholar]
- Dias, J.P.; Faria, J.P.; Ferreira, H.S. A reactive and model-based approach for developing internet-of-things systems. In Proceedings of the 2018 11th International Conference on the Quality of Information and Communications Technology (QUATIC), Coimbra, Portugal, 4–7 September 2018; pp. 276–281. [Google Scholar]
- Gomes, T.; Lopes, P.; Alves, J.; Mestre, P.; Cabral, J.; Monteiro, J.L.; Tavares, A. A modeling domain-specific language for IoT-enabled operating systems. In Proceedings of the IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October 2017; pp. 3945–3950. [Google Scholar]
- Einarsson, A.F.; Patreksson, P.; Hamdaqa, M.; Hamou-Lhadj, A. SmarthomeML: Towards a domain-specific modeling language for creating smart home applications. In Proceedings of the 2017 IEEE International Congress on Internet of Things (ICIOT), Honolulu, HI, USA, 25–30 June 2017; pp. 82–88. [Google Scholar]
- Rosique, F.; Losilla, F.; Pastor, J.Á. A domain specific language for smart cities. Multidiscip. Digit. Publ. Inst. Proc. 2017, 2, 148. [Google Scholar]
- Thramboulidis, K.; Bochalis, P.; Bouloumpasis, J. A framework for MDE of IoT-based manufacturing cyber-physical systems. In Proceedings of the Seventh International Conference on the Internet of Things, Linz, Austria, 22–25 October 2017; pp. 1–8. [Google Scholar]
- Durmaz, C.; Challenger, M.; Dagdeviren, O.; Kardas, G. Modelling contiki-based IoT systems. In Proceedings of the 6th Symposium on Languages, Applications and Technologies (SLATE 2017), Vila do Conde, Portugal, 26–27 June 2017. [Google Scholar]
- Morin, B.; Fleurey, F.; Husa, K.E.; Barais, O. A Generative Middleware for Heterogeneous and Distributed Services. In Proceedings of the 2016 19th International ACM SIGSOFT Symposium on Component-Based Software Engineering (CBSE), Venice, Italy, 5–8 April 2016; pp. 107–116. [Google Scholar] [CrossRef] [Green Version]
- Alves, M.P.; Delicato, F.C.; Pires, P.F. Iota-md: A model-driven approach for applying qos attributes in the development of the iot systems. In Proceedings of the Symposium on Applied Computing, Marrakech, Morocco, 3–7 April 2017; pp. 1773–1780. [Google Scholar]
- Mezghani, E.; Exposito, E.; Drira, K. A model-driven methodology for the design of autonomic and cognitive IoT-based systems: Application to healthcare. IEEE Trans. Emerg. Top. Comput. Intell. 2017, 1, 224–234. [Google Scholar] [CrossRef]
- Hassine, T.B.; Khayati, O.; Ghezala, H.B. An IoT domain meta-model and an approach to software development of IoT solutions. In Proceedings of the 2017 International Conference on Internet of Things, Embedded Systems and Communications (IINTEC), Gafsa, Tunisia, 20–22 October 2017; pp. 32–37. [Google Scholar]
- Venčkauskas, A.; Štuikys, V.; Toldinas, J.; Jusas, N. A model-driven framework to develop personalized health monitoring. Symmetry 2016, 8, 65. [Google Scholar] [CrossRef]
- Koshima, A.A.; Englebert, V.; Amani, M.; Debieche, A.; Wakjira, A. A Model-Driven Engineering Approach for the Well-Being of Ageing People. In Proceedings of the International Conference on Conceptual Modeling, Gifu, Japan, 14–17 November 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–29. [Google Scholar]
- Costa, B.; Pires, P.F.; Delicato, F.C.; Li, W.; Zomaya, A.Y. Design and analysis of IoT applications: A model-driven approach. In Proceedings of the 2016 IEEE 14th Intl Conf on Dependable, Autonomic and Secure Computing, 14th Intl Conf on Pervasive Intelligence and Computing, 2nd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), Auckland, New Zealand, 8–12 August 2016; pp. 392–399. [Google Scholar]
- Ciccozzi, F.; Spalazzese, R. Mde4iot: Supporting the internet of things with model-driven engineering. In Intelligent Distributed Computing X: Proceedings of the 10th International Symposium on Intelligent Distributed Computing–IDC 2016, Paris, France, 10–12 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 67–76. [Google Scholar]
- Karkouch, A.; Mousannif, H.; Al Moatassime, H.; Noel, T. A model-driven architecture-based data quality management framework for the internet of Things. In Proceedings of the 2016 2nd International Conference on Cloud Computing Technologies and Applications (CloudTech), Marrakesh, Morocco, 24–26 May 2016; pp. 252–259. [Google Scholar]
- Grace, P.; Pickering, B.; Surridge, M. Model-driven interoperability: Engineering heterogeneous IoT systems. Ann. Telecommun. 2016, 71, 141–150. [Google Scholar] [CrossRef]
- Mazzini, S.; Favaro, J.; Baracchi, L. A model-based approach across the IoT lifecycle for scalable and distributed smart applications. In Proceedings of the 2015 IEEE 18th International Conference on Intelligent Transportation Systems, Gran Canaria, Spain, 15–18 September 2015; pp. 149–154. [Google Scholar]
- Nguyen, X.T.; Tran, H.T.; Baraki, H.; Geihs, K. FRASAD: A framework for model-driven IoT Application Development. In Proceedings of the 2015 IEEE 2nd world forum on internet of things (WF-IoT), Milan, Italy, 14–16 December 2015; pp. 387–392. [Google Scholar]
- Salihbegovic, A.; Eterovic, T.; Kaljic, E.; Ribic, S. Design of a domain specific language and IDE for Internet of things applications. In Proceedings of the 2015 38th international convention on information and communication technology, electronics and microelectronics (MIPRO), Opatija, Croatia, 25–29 May 2015; pp. 996–1001. [Google Scholar]
- Pramudianto, F.; Kamienski, C.A.; Souto, E.; Borelli, F.; Gomes, L.L.; Sadok, D.; Jarke, M. Iot link: An internet of things prototyping toolkit. In Proceedings of the 2014 IEEE 11th Intl Conf on Ubiquitous Intelligence and Computing and 2014 IEEE 11th Intl Conf on Autonomic and Trusted Computing and 2014 IEEE 14th Intl Conf on Scalable Computing and Communications and Its Associated Workshops, Bali, Indonesia, 9–12 December 2014; pp. 1–9. [Google Scholar]
- Thang, N.X.; Zapf, M.; Geihs, K. Model driven development for data-centric sensor network applications. In Proceedings of the 9th International Conference on Advances in Mobile Computing and Multimedia, Ho Chi Minh City, Vietnam, 5–7 December 2011; pp. 194–197. [Google Scholar]
Authors | Study | Paradigm | Target System | Analyzed Papers | Years |
---|---|---|---|---|---|
Sabin et al., 2018 | [27] | MDE | IoT | 26 | N/A |
Felicien et al., 2020 | [28] | Low-code Engineering | IoT | 16 | 2000–2020 |
Muzaffar et al., 2017 | [29] | MDE | Cloud computing | 25 | 2009–2016 |
Abshir Mohamed et al., 2021 | [30] | MDE | CPS | 140 | 2010–2018 |
Casalaro et al., 2022 | [31] | MDE | Mobile Robot systems | 69 | 2000–2022 |
Mashkoor et al., 2021 | [32] | MDE | Safety and Security Systems | 95 | 1992–2020 |
Salman et al., 2020 | [15] | DSL | IoT | 23 | 2014–2020 |
Edsonde et al., 2021 | [33] | MDE | Robotics | 63 | 2014–2022 |
PID | Framework | DSLs | UML | BPMN | SysMl | UML Profile | Other |
---|---|---|---|---|---|---|---|
P1 | ML-Quadrat (ML2) | ✓ | ✓ | ||||
P3 | Monitor-IoT | ✓ | |||||
P5 | SimulateIoT-FIWARE | ✓ | |||||
P6 | CyprIoT-DSL | ✓ | |||||
P7 | ✓ | ||||||
P9 | HealMA | ✓ | |||||
P10 | CHESSIoT | ✓ | |||||
P11 | FTG+PM | ✓ | ✓ | ||||
P13 | SimulateIoT | ✓ | |||||
P14 | ✓ | ||||||
P16 | FaultFlow | ✓ | |||||
P18 | ✓ | ||||||
P19 | DSML4contiki | ✓ | |||||
P20 | ✓ | ||||||
P22 | ✓ | ||||||
P24 | ✓ | ||||||
P25 | ✓ | ||||||
P29 | SoaML4IoT | ✓ | ✓ | ✓ | |||
P30 | ✓ | ✓ | |||||
P31 | ✓ | ||||||
P32 | Cypriot | ✓ | |||||
P35 | ✓ | ||||||
P36 | ✓ | ||||||
P37 | ✓ | ||||||
P38 | Semiotics | ✓ | ✓ | ✓ | |||
P39 | SiMoNa | ✓ | |||||
P41 | ✓ | ||||||
P42 | ✓ | ||||||
P43 | ✓ | ||||||
P44 | UMLOA | ✓ | |||||
P46 | ✓ | ||||||
P47 | SmartHomeML | ✓ | |||||
P48 | ✓ | ||||||
P49 | UML4IoT | ✓ | |||||
P50 | ✓ | ||||||
P51 | ThingML | ✓ | |||||
P52 | IoTA-MD | ✓ | |||||
P53 | ✓ | ||||||
P54 | ✓ | ||||||
P55 | ✓ | ||||||
P56 | ✓ | ||||||
P59 | ✓ | ||||||
P60 | SysML4IoT | ✓ | |||||
P61 | MDE4IoT | ✓ | |||||
P65 | FRASAD | ✓ | |||||
P66 | ✓ | ||||||
P68 | ✓ | ||||||
Total | 29 | 11 | 2 | 2 | 5 | 5 |
Textual Modeling Language Tools | Graphical Modeling Language Tools | |||||||
---|---|---|---|---|---|---|---|---|
PID | Framework | Xtext | MontiCore | Sirius | Obeo Designer | GMF | Metaedit+ | Eugenia |
P1 | ML-Quadrat (ML2) | ✓ | ||||||
P2 | ✓ | |||||||
P3 | Monitor-IoT | ✓ | ||||||
P4 | ✓ | |||||||
p5 | SimulateIoT-FIWARE | ✓ | ||||||
P6 | CyprIoT-DSL | |||||||
P7 | ✓ | ✓ | ||||||
P9 | HealMA | ✓ | ||||||
P10 | CHESSIoT | |||||||
P12 | ✓ | ✓ | ||||||
P13 | SimulateIoT | ✓ | ✓ | |||||
P14 | ✓ | |||||||
P21 | IoTSuite | ✓ | ||||||
P22 | ✓ | |||||||
P24 | ✓ | |||||||
P30 | ✓ | |||||||
P32 | Cypiot | ✓ | ||||||
P35 | ✓ | |||||||
P39 | SiMoNa | ✓ | ||||||
P46 | EL4IoT | ✓ | ||||||
P50 | ✓ | ✓ | ||||||
P56 | ✓ | |||||||
P65 | FRASAD | ✓ | ||||||
P67 | ✓ | |||||||
Total | 6 | 1 | 7 | 1 | 6 | 1 | 4 |
Transformation | Tools for Transformation | ||||||
---|---|---|---|---|---|---|---|
PID | Framework | M2T | M2M | Accelo | ATL | M2T Output | M2M Output |
P1 | ML-Quadrat | ✓ | Java, Python | ||||
P2 | Intermediary Macro-Code Generation, Code Generation for Node-RED Target, Java code application | ||||||
P3 | |||||||
P4 | ✓ | C for Arduino, Python | |||||
P5 | SimulateIoT-FIWARE | ✓ | ✓ | ✓ | ✓ | ||
P6 | CyprIoT-DSL | ✓ | ✓ | ✓ | ✓ | C, Java, Arduino, AC rules and documentation | |
P7 | ✓ | Java, configuration code | |||||
P8 | MontiThings | C++ | |||||
P9 | HealMA | ✓ | ✓ | Java, XML | |||
P11 | FTG+PM | ✓ | ✓ | C, nesC, Java, JSON, XML, GenerateContiki Code, GenerateTinyOSCode, GenerateJavaCode, GeneratePetrinetConfiguration, GenerateArduinoCode, GenerateRIOTCode | RIOTMode, SystemModel, GenerateContikiModel, GenerateTinyOSModel, GenrateGatewayModel, GeneratePetrinetModel, GenerateNodeRedModel, GenerateArduinoModel, GenerateRIOTModel, GenerateRIOTModel | ||
P13 | SimulateIoT | ✓ | ✓ | Java, configuration code | |||
P14 | ✓ | ✓ | Java, Xml, Ardunio code, json RESTful APIs Associated | ||||
P15 | MoSIoT | ✓ | |||||
P19 | DSMl4Contiki | ✓ | ✓ | Petri-net Models | |||
P22 | ✓ | ✓ | Arduino code files (.ino), code Node-Red(.json), Ballerina code (.bal) | ||||
P23 | AutoIoT | ✓ | ✓ | ||||
P24 | ✓ | ✓ | Flutter, React JS, And VHDL. | ||||
P25 | ✓ | ||||||
P26 | ✓ | ✓ | ✓ | ||||
P27 | ✓ | ✓ | |||||
P28 | BRAIN-IoT | ✓ | Java, Osgi Artifact, C | ||||
P33 | GreyCat | Java, TypeScript. | |||||
P35 | Code for Mote (SourceNode), SinkNode, Raspberry Pi (Java Code), ESP8266 (Arduino code), configuration for IoT Log Manager | Petri-net Models | |||||
P36 | ✓ | ✓ | Ardunio code | ||||
P41 | ✓ | ✓ | |||||
P42 | ✓ | ||||||
P47 | SmartHomeML | ✓ | |||||
P51 | ThingML | C/C++, Java, and JavaScript and several libraries and open platforms (Arduino, Raspberry Pi, Intel Edison, Linux, and so on). | |||||
P52 | ✓ | ✓ | |||||
P56 | Java | ||||||
P58 | ✓ | ||||||
P59 | Java | ||||||
P61 | MDE4IoT | C | |||||
P62 | ✓ | ✓ | ✓ | java code and SQL DDL | |||
P67 | ✓ | Java | |||||
P68 | ✓ | ✓ | |||||
Total | 18 | 14 | 11 | 7 |
PID | Framework | Healthcare | Agricultural | City | Energy | Manufacturing | Building | Environment | Transport |
---|---|---|---|---|---|---|---|---|---|
P1 | ML-Quadrat (ML2) | ✓ | ✓ | ||||||
P4 | ✓ | ||||||||
P5 | SimulateIoT-FIWARE | ✓ | |||||||
P6 | CyprIoT-DSL | ✓ | ✓ | ||||||
P7 | ✓ | ✓ | |||||||
P8 | ✓ | ||||||||
P9 | HealMA | ✓ | |||||||
P10 | CHESSIoT | ✓ | |||||||
P11 | FTG+PM | ✓ | |||||||
P13 | SimulateIoT | ✓ | ✓ | ||||||
P14 | ✓ | ||||||||
P15 | MoSIoT | ✓ | |||||||
P16 | FaultFlow | ✓ | |||||||
P19 | DSMl4Contiki | ✓ | |||||||
P20 | ✓ | ||||||||
P21 | ✓ | ||||||||
P22 | ✓ | ||||||||
P23 | AutoIoT | ✓ | |||||||
P24 | ✓ | ||||||||
P25 | ✓ | ||||||||
P26 | ✓ | ||||||||
P27 | ✓ | ||||||||
P28 | BRAIN-IoT | ✓ | |||||||
P30 | ✓ | ||||||||
P31 | ✓ | ||||||||
P32 | Cypriot | ✓ | |||||||
P35 | ✓ | ||||||||
P36 | ✓ | ||||||||
P37 | ✓ | ||||||||
P38 | Semiotics | ✓ | |||||||
P39 | SiMoNa | ✓ | |||||||
P40 | ✓ | ||||||||
P43 | ✓ | ||||||||
P44 | UMLOA | ✓ | |||||||
P45 | ✓ | ||||||||
P47 | SmartHomeML | ✓ | |||||||
P48 | ✓ | ||||||||
P50 | ✓ | ||||||||
P51 | ThingML | ✓ | ✓ | ||||||
P52 | IoTA-MD | ✓ | |||||||
P53 | ✓ | ||||||||
P54 | ✓ | ||||||||
P55 | ✓ | ||||||||
P57 | ✓ | ||||||||
P58 | ✓ | ||||||||
P61 | MDE4IoT | ✓ | |||||||
P62 | ✓ | ||||||||
P64 | ✓ | ||||||||
Total | 10 | 3 | 3 | 2 | 8 | 16 | 5 | 6 |
Types of Machine Learning Algorithms | |||||
---|---|---|---|---|---|
PID | Framework | Supervised | Unsupervised | Semi Supervised | Time Series Models |
P1 | ML-Quadrat(ML2) | Logistic Regression Linear Regression, Gaussian Naive Bayes, Multinomial Naive Bayes, Complement Naive Bayes, Bernoulli Naive Bayes, Categorical Naive Bayes, Decision Tree Regressor Decision Tree Classifier, Decision Tree Regressor Decision Tree Classifier, Random Forest Classifier, Multi-Layer Perceptron (MLP) Artificial Neural Networks (ANN) | K-Means, Mini-Batch K-Means, DB-SCAN, Spectral Clustering, Gaussian Mixture Model, | Self-Training, Label Propagation, Scikit-Learn Label Spreading | NO |
P4 | Logistic Regression Linear Regression, Gaussian Naive Bayes, Multinomial Naive Bayes, Complement Naive Bayes, Bernoulli Naive Bayes, Categorical Naive Bayes, Decision Tree Regressor Decision Tree Classifier, Decision Tree Regressor Decision Tree Classifier, Random Forest Classifier, Multi-Layer Perceptron (MLP) Artificial Neural Networks (ANN) | K-Means, Mini-Batch K-Means, DB-SCAN, Spectral Clustering, Gaussian Mixture Model, | Self-Training, Label Propagation, Scikit-Learn Label Spreading | NO | |
P15 | MoSIoT | Live linear regression, Live decision trees Naive Bayesian models Gaussian Bayesian models baz | KNN, StreamKM++ Gaussian Mixture Models | NO | |
P33 | GreyCat | Live linear regression, Live decision trees Naive Bayesian models Gaussian Bayesian models baz | KNN, StreamKM++ Gaussian Mixture Models | NO |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mardani Korani, Z.; Moin, A.; Rodrigues da Silva, A.; Ferreira, J.C. Model-Driven Engineering Techniques and Tools for Machine Learning-Enabled IoT Applications: A Scoping Review. Sensors 2023, 23, 1458. https://doi.org/10.3390/s23031458
Mardani Korani Z, Moin A, Rodrigues da Silva A, Ferreira JC. Model-Driven Engineering Techniques and Tools for Machine Learning-Enabled IoT Applications: A Scoping Review. Sensors. 2023; 23(3):1458. https://doi.org/10.3390/s23031458
Chicago/Turabian StyleMardani Korani, Zahra, Armin Moin, Alberto Rodrigues da Silva, and João Carlos Ferreira. 2023. "Model-Driven Engineering Techniques and Tools for Machine Learning-Enabled IoT Applications: A Scoping Review" Sensors 23, no. 3: 1458. https://doi.org/10.3390/s23031458
APA StyleMardani Korani, Z., Moin, A., Rodrigues da Silva, A., & Ferreira, J. C. (2023). Model-Driven Engineering Techniques and Tools for Machine Learning-Enabled IoT Applications: A Scoping Review. Sensors, 23(3), 1458. https://doi.org/10.3390/s23031458