Age-Related Reliability of B-Mode Analysis for Tailored Exosuit Assistance
Abstract
:1. Introduction
- (a)
- A ResNet model [35] coupled with long short-term memory (LSTM) units trained and tested to reliably regress fascicle lengths from continuous ultrasound video recordings of young and older adults;
- (b)
- A methodology able to process videos of arbitrary length, containing different populations (young and older adults), walking tasks (incline and decline), and walking velocities;
- (c)
- A fast architecture that lays the foundations for a real-time model capable of executing tasks reliably in real-world scenarios for an individualized profile in human-in-the-loop assistive interventions.
2. Materials and Methods
2.1. Participants
2.2. Experimental Procedure and Study Design
2.3. Labeling
2.4. Model Design
2.5. Model Evaluation
3. Results
3.1. Young-Age-Trained Model
3.2. All-Age-Trained Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Young, A.J.; Ferris, D.P. State of the art and future directions for lower limb robotic exoskeletons. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 25, 171–182. [Google Scholar] [CrossRef]
- Ding, Y.; Kim, M.; Kuindersma, S.; Walsh, C.J. Human-in-the-loop optimization of hip assistance with a soft exosuit during walking. Sci. Robot. 2018, 3, eaar5438. [Google Scholar] [CrossRef]
- Krupenevich, R.L.; Beck, O.N.; Sawicki, G.S.; Franz, J.R. Reduced Achilles Tendon Stiffness Disrupts Calf Muscle Neuromechanics in Elderly Gait. Gerontology 2022, 68, 241–251. [Google Scholar] [CrossRef]
- Manini, T.M. Mobility decline in old age: A time to intervene. Exerc. Sport Sci. Rev. 2013, 41, 2. [Google Scholar] [CrossRef]
- Rantanen, T. Promoting mobility in older people. J. Prev. Med. Pub. Health 2013, 46, S50. [Google Scholar] [CrossRef]
- Monaco, V.; Tropea, P.; Aprigliano, F.; Martelli, D.; Parri, A.; Cortese, M.; Molino-Lova, R.; Vitiello, N.; Micera, S. An ecologically-controlled exoskeleton can improve balance recovery after slippage. Sci. Rep. 2017, 7, srep46721. [Google Scholar] [CrossRef]
- Porto, J.M.; Cangussu-Oliveira, L.M.; Freire Junior, R.C.; Vieira, F.T.; Capato, L.L.; de Oliveira, B.G.M.; de Abreu, D.C.C. Relationship between lower limb muscle strength and future falls among community-dwelling older adults with no history of falls: A prospective 1-year study. J. Appl. Gerontol. 2021, 40, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Moreland, J.D.; Richardson, J.A.; Goldsmith, C.H.; Clase, C.M. Muscle weakness and falls in older adults: A systematic review and meta-analysis. J. Am. Geriatr. Soc. 2004, 52, 1121–1129. [Google Scholar] [CrossRef] [PubMed]
- Doherty, T.J. Invited review: Aging and sarcopenia. J. Appl. Physiol. 2003, 95, 1717–1727. [Google Scholar] [CrossRef] [PubMed]
- Morse, C.I.; Thom, J.M.; Birch, K.M.; Narici, M.V. Changes in triceps surae muscle architecture with sarcopenia. Acta Physiol. Scand. 2005, 183, 291–298. [Google Scholar] [CrossRef]
- Hagoort, I.; Hortobágyi, T.; Vuillerme, N.; Lamoth, C.J.; Murgia, A. Age-and muscle-specific reliability of muscle architecture measurements assessed by two-dimensional panoramic ultrasound. Biomed. Eng. Online 2022, 21, 15. [Google Scholar] [CrossRef]
- Zhang, J.; Fiers, P.; Witte, K.A.; Jackson, R.W.; Poggensee, K.L.; Atkeson, C.G.; Collins, S.H. Human-in-the-loop optimization of exoskeleton assistance during walking. Science 2017, 356, 1280–1284. [Google Scholar] [CrossRef] [PubMed]
- Nuckols, R.; Lee, S.; Swaminathan, K.; Orzel, D.; Howe, R.; Walsh, C. Individualization of exosuit assistance based on measured muscle dynamics during versatile walking. Sci. Robot. 2021, 6, eabj1362. [Google Scholar] [CrossRef]
- Slade, P.; Kochenderfer, M.J.; Delp, S.L.; Collins, S.H. Personalizing exoskeleton assistance while walking in the real world. Nature 2022, 610, 277–282. [Google Scholar] [CrossRef]
- Poggensee, K.L.; Collins, S.H. How adaptation, training, and customization contribute to benefits from exoskeleton assistance. Sci. Robot. 2021, 6, eabf1078. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, R.J.; Loram, I.D. Estimation of absolute states of human skeletal muscle via standard B-mode ultrasound imaging and deep convolutional neural networks. J. R. Soc. Interface 2020, 17, 20190715. [Google Scholar] [CrossRef]
- Kwah, L.K.; Pinto, R.Z.; Diong, J.; Herbert, R.D. Reliability and validity of ultrasound measurements of muscle fascicle length and pennation in humans: A systematic review. J. Appl. Physiol. 2013, 114, 761–769. [Google Scholar] [CrossRef] [PubMed]
- Nuckols, R.W.; Dick, T.J.; Beck, O.N.; Sawicki, G.S. Ultrasound imaging links soleus muscle neuromechanics and energetics during human walking with elastic ankle exoskeletons. Sci. Rep. 2020, 10, 3604. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Z.; Iyer, A.; Sun, Z.; Kim, K.; Sharma, N. A Hybrid Knee Exoskeleton Using Real-Time Ultrasound-Based Muscle Fatigue Assessment. IEEE/ASME Trans. Mechatron. 2022, 27, 1854–1862. [Google Scholar] [CrossRef]
- Kim, M.K.; Lee, H.J.; Lee, W.H. Ultrasound imaging for age-related differences of lower extremity muscle architecture. Phys. Ther. Rehabil. Sci. 2015, 4, 38–43. [Google Scholar] [CrossRef] [Green Version]
- Kurokawa, S.; Fukunaga, T.; Fukashiro, S. Behavior of fascicles and tendinous structures of human gastrocnemius during vertical jumping. J. Appl. Physiol. 2001, 90, 1349–1358. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, Y.; Ichinose, Y.; Fukunaga, T. Architectural and functional features of human triceps surae muscles during contraction. J. Appl. Physiol. 1998, 85, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Cronin, N.J.; Carty, C.P.; Barrett, R.S.; Lichtwark, G. Automatic tracking of medial gastrocnemius fascicle length during human locomotion. J. Appl. Physiol. 2011, 111, 1491–1496. [Google Scholar] [CrossRef]
- Miyoshi, T.; Kihara, T.; Koyama, H.; Yamamoto, S.-I.; Komeda, T. Automatic detection method of muscle fiber movement as revealed by ultrasound images. Med. Eng. Phys. 2009, 31, 558–564. [Google Scholar] [CrossRef]
- Farris, D.J.; Lichtwark, G.A. UltraTrack: Software for semi-automated tracking of muscle fascicles in sequences of B-mode ultrasound images. Comput. Methods Programs Biomed. 2016, 128, 111–118. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, Y.-P. Estimation of muscle fiber orientation in ultrasound images using revoting hough transform (RVHT). Ultrasound Med. Biol. 2008, 34, 1474–1481. [Google Scholar] [CrossRef]
- Jafari-Khouzani, K.; Soltanian-Zadeh, H. Radon transform orientation estimation for rotation invariant texture analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1004–1008. [Google Scholar] [CrossRef]
- Rizzatto, G. Ultrasound transducers. Eur. J. Radiol. 1998, 27, S188–S195. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, L.-Q. Automatic tracking of muscle fascicles in ultrasound images using localized radon transform. IEEE Trans. Biomed. Eng. 2011, 58, 2094–2101. [Google Scholar] [CrossRef]
- Darby, J.; Hodson-Tole, E.F.; Costen, N.; Loram, I.D. Automated regional analysis of B-mode ultrasound images of skeletal muscle movement. J. Appl. Physiol. Bethesda Md 1985 2012, 112, 313–327. [Google Scholar] [CrossRef] [PubMed]
- van der Zee, T.J.; Kuo, A.D. TimTrack: A drift-free algorithm for estimating geometric muscle features from ultrasound images. PLoS ONE 2022, 17, e0265752. [Google Scholar] [CrossRef] [PubMed]
- Drazan, J.F.; Hullfish, T.J.; Baxter, J.R. An automatic fascicle tracking algorithm quantifying gastrocnemius architecture during maximal effort contractions. PeerJ. 2019, 7, e7120. [Google Scholar] [CrossRef] [PubMed]
- Rosa, L.G.; Zia, J.S.; Inan, O.T.; Sawicki, G.S. Machine learning to extract muscle fascicle length changes from dynamic ultrasound images in real-time. PloS ONE 2021, 16, e0246611. [Google Scholar] [CrossRef] [PubMed]
- Katakis, S.; Barotsis, N.; Kakotaritis, A.; Economou, G.; Panagiotopoulos, E.; Panayiotakis, G. Automatic Extraction of Muscle Parameters with Attention UNet in Ultrasonography. Sensors 2022, 22, 5230. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Song, Q.; Sun, M.; Lewis, K.; Choi, J.H.; Manor, B.; Li, L. Hoffmann Reflex Measured from Lateral Gastrocnemius Is More Reliable than from Soleus among Elderly with Peripheral Neuropathy. Front. Aging Neurosci. 2022, 14, 800698. [Google Scholar] [CrossRef]
- Lai, A.; Lichtwark, G.A.; Schache, A.G.; Lin, Y.-C.; Brown, N.A.; Pandy, M.G. In vivo behavior of the human soleus muscle with increasing walking and running speeds. J. Appl. Physiol. 2015, 118, 1266–1275. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef]
- Gionfrida, L.; Rusli, W.M.; Kedgley, A.E.; Bharath, A.A. A 3DCNN-LSTM Multi-Class Temporal Segmentation for Hand Gesture Recognition. Electronics 2022, 11, 2427. [Google Scholar] [CrossRef]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M. {TensorFlow}: A system for {Large-Scale} machine learning. In Proceedings of the Osdi, Savannah, GA, USA, 2–4 November 2016; Volume 16, pp. 265–283. Available online: https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf (accessed on 29 November 2022).
- Özkal, Ö.; Kara, M.; Topuz, S.; Kaymak, B.; Bakı, A.; Özçakar, L. Assessment of core and lower limb muscles for static/dynamic balance in the older people: An ultrasonographic study. Age Ageing 2019, 48, 881–887. [Google Scholar] [CrossRef]
- Jaén-Vargas, M.; Leiva, K.M.R.; Fernandes, F.; Gonçalves, S.B.; Silva, M.T.; Lopes, D.S.; Olmedo, J.J.S. Effects of sliding window variation in the performance of acceleration-based human activity recognition using deep learning models. PeerJ. Comput. Sci. 2022, 8, e1052. [Google Scholar] [CrossRef]
- Haryanto, T.; Suhartanto, H.; Arymurthy, A.M.; Kusmardi, K. Conditional sliding windows: An approach for handling data limitation in colorectal histopathology image classification. Inform. Med. Unlocked 2021, 23, 100565. [Google Scholar] [CrossRef]
- Frey, S.; Vostrikov, S.; Benini, L.; Cossettini, A. WULPUS: A Wearable Ultra Low-Power Ultrasound probe for multi-day monitoring of carotid artery and muscle activity. In Proceedings of the 2022 IEEE International Ultrasonics Symposium (IUS), Venice, Italy, 10–13 October 2022; pp. 1–4. [Google Scholar]
- Kamatham, A.T.; Alzamani, M.; Dockum, A.; Sikdar, S.; Mukherjee, B. Sparse Sonomyography-based Estimation of Isometric Force: A Comparison of Methods and Features. IEEE Trans. Med. Robot. Bionics 2022, 4, 821–829. [Google Scholar] [CrossRef]
Performance Metrics | Young-Age-Trained | All-Age-Trained | |
---|---|---|---|
Young | Older | Older | |
R2 | 0.85 | 0.53 | 0.79 |
RMSE (in mm) | 2.36 ±1.51 | 4.7 ± 4.66 | 3.95 ± 2.51 |
MAPE (%) | 3.69 | 5.19 | 4.5 |
aaFD (in mm) | 0.48± 1.10 | 1.9 ± 1.39 | 0.67± 1.8 |
Average detection time (s) | 0.59 ± 1.53 | 0.62 ± 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gionfrida, L.; Nuckols, R.W.; Walsh, C.J.; Howe, R.D. Age-Related Reliability of B-Mode Analysis for Tailored Exosuit Assistance. Sensors 2023, 23, 1670. https://doi.org/10.3390/s23031670
Gionfrida L, Nuckols RW, Walsh CJ, Howe RD. Age-Related Reliability of B-Mode Analysis for Tailored Exosuit Assistance. Sensors. 2023; 23(3):1670. https://doi.org/10.3390/s23031670
Chicago/Turabian StyleGionfrida, Letizia, Richard W. Nuckols, Conor J. Walsh, and Robert D. Howe. 2023. "Age-Related Reliability of B-Mode Analysis for Tailored Exosuit Assistance" Sensors 23, no. 3: 1670. https://doi.org/10.3390/s23031670