Parallel Factorization to Implement Group Analysis in Brain Networks Estimation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Partial Directed Coherence
2.2. Tensor Decomposition by Means of Parallel factorization (PARAFAC)
2.3. PARAFAC to Extract the Grand Average Connectivity Matrix
2.4. Testing PARAFAC Algorithm on Synthetic Data
- Generation of synthetic datasets composed of different connectivity matrices (one per subject) obtained as modified versions of a predefined ground-truth matrix representing the grand average. The percentage of modification was modulated in the study and the ground-truth was changed at each repetition of the simulation process;
- Application of the PARAFAC algorithm to synthetic datasets in order to factorize the whole data matrix as a sum of rank-one tensors (see Section 2.3 for further details). The algorithm was applied using three values for the PARAFAC factors number (PAR-FACT: );
- Selection of the rank-one tensor that better represents the grand average connectivity pattern within the whole dataset;
- Evaluation of the performances by comparing the rank-one tensor chosen at point 3 with the current ground-truth.
2.4.1. Synthetic Data Generation
- dataset sample size (SAMPLE-SIZE, ) defined as the number of subjects simulated in the group dataset;
- dataset dimension defined as the number of nodes of the simulated connectivity matrices (NODES, );
- percentage of swapped connections with respect to the original ground-truth network (SWAP-CON, ) representing different levels of inter-subject variability of the connectivity matrices in the group (noise level).
2.4.2. Performance Evaluation
- False Positives (FP), defined as the total number of null connections in the ground truth labeled as not-null in the grand average;
- True Positives (TP) defined as the total number of not-null connections in both the grand average and ground truth;
- False Negatives (FP), defined as the total number of not-null connections in the ground truth labeled as null in the grand average;
- True Negatives (TN) defined as the total number of null connections in both the grand average and ground truth.
2.4.3. Statistical Analysis
2.5. Testing PARAFAC Algorithm on Real EEG Data
2.5.1. Participants
2.5.2. Experimental Design
2.5.3. EEG Data Processing
2.5.4. Performance Evaluations by Means of Degree Scalp Maps
3. Results
3.1. Performances of PARAFAC Algorithm on Synthetic Data
3.2. Performance of PARAFAC Algorithm on Real EEG Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sporns, O. Structure and Function of Complex Brain Networks. Dialogues Clin. Neurosci. 2013, 15, 247–262. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Park, J.; Yang, Y.-M. A Novel Quick-Response Eigenface Analysis Scheme for Brain–Computer Interfaces. Sensors 2022, 22, 5860. [Google Scholar] [CrossRef] [PubMed]
- Sporns, O. Networks of the Brain; Massachusetts Institute of Technology: Cambridge, UK, 2011; ISBN 978-0-262-52898-6. [Google Scholar]
- Smith, S.M.; Miller, K.L.; Salimi-Khorshidi, G.; Webster, M.; Beckmann, C.F.; Nichols, T.E.; Ramsey, J.D.; Woolrich, M.W. Network Modelling Methods for FMRI. Neuroimage 2011, 54, 875–891. [Google Scholar] [CrossRef] [PubMed]
- Gong, G.; He, Y.; Concha, L.; Lebel, C.; Gross, D.W.; Evans, A.C.; Beaulieu, C. Mapping Anatomical Connectivity Patterns of Human Cerebral Cortex Using In Vivo Diffusion Tensor Imaging Tractography. Cereb. Cortex 2009, 19, 524–536. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J. Functional and Effective Connectivity: A Review. Brain Connect. 2011, 1, 13–36. [Google Scholar] [CrossRef]
- Granger, C.W.J. Investigating Causal Relations by Econometric Models and Cross-Spectral Methods. Econometrica 1969, 37, 424. [Google Scholar] [CrossRef]
- Astolfi, L.; Cincotti, F.; Mattia, D.; Marciani, M.G.; Baccala, L.A.; de Vico Fallani, F.; Salinari, S.; Ursino, M.; Zavaglia, M.; Ding, L.; et al. Comparison of Different Cortical Connectivity Estimators for High-Resolution EEG Recordings. Hum. Brain Mapp. 2007, 28, 143–157. [Google Scholar] [CrossRef]
- Toppi, J.; Petti, M.; De Vico Fallani, F.; Vecchiato, G.; Maglione, A.G.; Cincotti, F.; Salinari, S.; Mattia, D.; Babiloni, F.; Astolfi, L. Describing Relevant Indices from the Resting State Electrophysiological Networks. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), San Diego, CA, USA, 28 August 2012–1 September 2012; pp. 2547–2550. [Google Scholar]
- Vecchiato, G.; De Vico Fallani, F.; Astolfi, L.; Toppi, J.; Cincotti, F.; Mattia, D.; Salinari, S.; Babiloni, F. The Issue of Multiple Univariate Comparisons in the Context of Neuroelectric Brain Mapping: An Application in a Neuromarketing Experiment. J. Neusoci. Methods 2010, 191, 283–289. [Google Scholar] [CrossRef]
- Emilio, B.C. Teoria Statistica Delle Classi e Calcolo Delle Probabilita; Pubblicazioni del R. Istituto Superiore di Scienze Economiche e Commerciali di Firenze: Firenze, Italy, 1936; Volume 8. [Google Scholar]
- Pester, B.; de la Cruz, F.; Bar, K.-J.; Witte, H.; Leistritz, L. Detecting Spatially Highly Resolved Network Modules: A Multi Subject Approach. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 5481–5484. [Google Scholar]
- Miwakeichi, F.; Martínez-Montes, E.; Valdés-Sosa, P.A.; Nishiyama, N.; Mizuhara, H.; Yamaguchi, Y. Decomposing EEG Data into Space–Time–Frequency Components Using Parallel Factor Analysis. Neuroimage 2004, 22, 1035–1045. [Google Scholar] [CrossRef]
- Spyrou, L.; Parra, M.; Escudero, J. Complex Tensor Factorization With PARAFAC2 for the Estimation of Brain Connectivity From the EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Belyaeva, I.; Gabrielson, B.; Wang, Y.-P.; Wilson, T.W.; Calhoun, V.; Stephen, J.; Adali, T. Multi-Subject Analysis for Brain Developmental Patterns Discovery via Tensor Decomposition of MEG Data. Neuroinformatics 2022, 218, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Sameshima, K.; Baccala, L. (Eds.) Methods in Brain Connectivity Inference through Multivariates Time Series Analysis; Frontiers in Neuroengineering; CRC Press, Taylor & Francis: Boca Raton, FL, USA, 2014; ISBN 978-1-4398-4572-1. [Google Scholar]
- Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Automat. Contr. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Astolfi, L.; Cincotti, F.; Mattia, D.; Marciani, M.G.; Baccala, L.A.; Fallani, F.D.V.; Salinari, S.; Ursino, M.; Zavaglia, M.; Babiloni, F. Assessing Cortical Functional Connectivity by Partial Directed Coherence: Simulations and Application to Real Data. IEEE Trans. Biomed. Eng. 2006, 53, 1802–1812. [Google Scholar] [CrossRef] [PubMed]
- Kolda, T.G.; Bader, B.W. Tensor Decompositions and Applications. SIAM Rev. Soc. Ind. Appl. Math. 2009, 51, 455–500. [Google Scholar] [CrossRef]
- Bro, R. PARAFAC. Tutorial and Applications. Chemometr. Intell. Lab. Syst. 1997, 38, 149–171. [Google Scholar] [CrossRef]
- Rabanser, S.; Shchur, O.; Günnemann, S. Introduction to Tensor Decompositions and Their Applications in Machine Learning. ArXiv 2017, arXiv:1711.10781. [Google Scholar] [CrossRef]
- Testing the Significance of Connectivity Networks: Comparison of Different Assessing Procedures. IEEE Trans. Biomed. Eng. 2016, 63, 2461–2473. [CrossRef]
- Fawcett, T. An Introduction to ROC Analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- de Seta, V.; Toppi, J.; Colamarino, E.; Molle, R.; Castellani, F.; Cincotti, F.; Mattia, D.; Pichiorri, F. Cortico-Muscular Coupling to Control a Hybrid Brain-Computer Interface for Upper Limb Motor Rehabilitation: A Pseudo-Online Study on Stroke Patients. Front. Hum. Neurosci. 2022, 16, 1016862. [Google Scholar] [CrossRef]
- de Seta, V.; Colamarino, E.; Cincotti, F.; Mattia, D.; Mongiardini, E.; Pichiorri, F.; Toppi, J. Cortico-Muscular Coupling Allows to Discriminate Different Types of Hand Movements. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, Scotland, UK, 11 July 2022; pp. 2324–2327. [Google Scholar]
- Yasumasa Takahashi, D.; Antonio Baccal, L.; Sameshima, K. Connectivity Inference between Neural Structures via Partial Directed Coherence. J. Appl. Stat. 2007, 34, 1259–1273. [Google Scholar] [CrossRef]
- Sporns, O. Graph Theory Methods for the Analysis of Neural Connectivity Patterns. In Neuroscience Databases; Kötter, R., Ed.; Springer US: Boston, MA, USA, 2003; pp. 171–185. ISBN 978-1-4613-5384-3. [Google Scholar]
- Baccalá, L.A.; de Brito, C.S.N.; Takahashi, D.Y.; Sameshima, K. Unified Asymptotic Theory for All Partial Directed Coherence Forms. Phil. Trans. R. Soc. A. 2013, 371, 20120158. [Google Scholar] [CrossRef] [PubMed]
- Mechelli, A.; Penny, W.D.; Price, C.J.; Gitelman, D.R.; Friston, K.J. Effective Connectivity and Intersubject Variability: Using a Multisubject Network to Test Differences and Commonalities. Neuroimage 2002, 17, 1459–1469. [Google Scholar] [CrossRef] [PubMed]
- Betzel, R.F.; Bertolero, M.A.; Gordon, E.M.; Gratton, C.; Dosenbach, N.U.F.; Bassett, D.S. The Community Structure of Functional Brain Networks Exhibits Scale-Specific Patterns of Inter- and Intra-Subject Variability. Neuroimage 2019, 202, 115990. [Google Scholar] [CrossRef] [PubMed]
- Bro, R.; Kjeldahl, K.; Smilde, A.K.; Kiers, H.A.L. Cross-Validation of Component Models: A Critical Look at Current Methods. Anal. Bioanal. Chem. Res. 2008, 390, 1241–1251. [Google Scholar] [CrossRef] [PubMed]
- Timmerman, M.E.; Kiers, H.A.L. Three-Mode Principal Components Analysis: Choosing the Numbers of Components and Sensitivity to Local Optima. Br. J. Math. Stat. Psychol. 2000, 53, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Mørup, M.; Hansen, L.K. Automatic Relevance Determination for Multi-Way Models. J. Chemom. 2009, 23, 352–363. [Google Scholar] [CrossRef]
- Cong, F.; Lin, Q.-H.; Kuang, L.-D.; Gong, X.-F.; Astikainen, P.; Ristaniemi, T. Tensor Decomposition of EEG Signals: A Brief Review. J. Neurosci. Methods 2015, 248, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Neuper, C.; Wörtz, M.; Pfurtscheller, G. ERD/ERS Patterns Reflecting Sensorimotor Activation and Deactivation. Prog. Brain. Res. 2006, 159, 211–222. [Google Scholar]
Effect | DOF | FPR 20 Nodes | FPR 30 Nodes | FPR 50 Nodes | |||
---|---|---|---|---|---|---|---|
F | p | F | p | F | p | ||
PAR-FACT | (2, 198) | 50497.55 | <0.01 | 72505.4 | <0.01 | 80901.2 | <0.01 |
SWAP-CON | (2, 198) | 2200.03 | <0.01 | 4011.2 | <0.01 | 6098.7 | <0.01 |
SAMPLE-SIZE | (4, 396) | 65646.26 | <0.01 | 83402.3 | <0.01 | 94681.9 | <0.01 |
PAR-FACT * SWAP-CON | (4, 396) | 728.99 | <0.01 | 1227.3 | <0.01 | 2503.7 | <0.01 |
PAR-FACT * SAMPLE-SIZE | (8, 792) | 36742.33 | <0.01 | 47493.4 | <0.01 | 50507.5 | <0.01 |
SWAP-CON * SAMPLE-SIZE | (8, 792) | 1153.50 | <0.01 | 1848.0 | <0.01 | 2727.5 | <0.01 |
PAR-FACT * SWAP-CON * SAMPLE-SIZE | (16, 1584) | 381.90 | <0.01 | 654.8 | <0.01 | 1148.2 | <0.01 |
Effect | DOF | FNR 20 Nodes | FNR 30 Nodes | FNR 50 Nodes | |||
---|---|---|---|---|---|---|---|
F | p | F | p | F | p | ||
PAR-FACT | (2, 198) | 1154.440 | <0.01 | 3077.845 | <0.01 | 6507.522 | <0.01 |
SWAP-CON | (2, 198) | 1156.072 | <0.01 | 2580.131 | <0.01 | 5589.628 | <0.01 |
SAMPLE-SIZE | (4, 396) | 111.501 | <0.01 | 372.461 | <0.01 | 720.475 | <0.01 |
PAR-FACT * SWAP-CON | (4, 396) | 1111.953 | <0.01 | 2315.958 | <0.01 | 5166.622 | <0.01 |
PAR-FACT * SAMPLE-SIZE | (8, 792) | 111.838 | <0.01 | 377.123 | <0.01 | 718.188 | <0.01 |
SWAP-CON * SAMPLE-SIZE | (8, 792) | 82.582 | <0.01 | 235.413 | <0.01 | 468.317 | <0.01 |
PAR-FACT * SWAP-CON * SAMPLE-SIZE | (16, 1584) | 79.142 | <0.01 | 230.926 | <0.01 | 456.722 | <0.01 |
Effect | DOF | AUC 20 Nodes | AUC 30 Nodes | AUC 50 Nodes | |||
---|---|---|---|---|---|---|---|
F | p | F | p | F | p | ||
PAR-FACT | (2, 198) | 21577 | <0.01 | 33271 | <0.01 | 44600 | <0.01 |
SWAP-CON | (2, 198) | 2926 | <0.01 | 7704 | <0.01 | 10606 | <0.01 |
SAMPLE-SIZE | (4, 396) | 32272 | <0.01 | 53239 | <0.01 | 75013 | <0.01 |
PAR-FACT * SWAP-CON | (4, 396) | 174 | <0.01 | 313 | <0.01 | 830 | <0.01 |
PAR-FACT * SAMPLE-SIZE | (8, 792) | 15927 | <0.01 | 26991 | <0.01 | 31879 | <0.01 |
SWAP-CON * SAMPLE-SIZE | (8, 792) | 780 | <0.01 | 1614 | <0.01 | 2874 | <0.01 |
PAR-FACT * SWAP-CON * SAMPLE-SIZE | (16, 1584) | 103 | <0.01 | 198 | <0.01 | 489 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ranieri, A.; Pichiorri, F.; Colamarino, E.; de Seta, V.; Mattia, D.; Toppi, J. Parallel Factorization to Implement Group Analysis in Brain Networks Estimation. Sensors 2023, 23, 1693. https://doi.org/10.3390/s23031693
Ranieri A, Pichiorri F, Colamarino E, de Seta V, Mattia D, Toppi J. Parallel Factorization to Implement Group Analysis in Brain Networks Estimation. Sensors. 2023; 23(3):1693. https://doi.org/10.3390/s23031693
Chicago/Turabian StyleRanieri, Andrea, Floriana Pichiorri, Emma Colamarino, Valeria de Seta, Donatella Mattia, and Jlenia Toppi. 2023. "Parallel Factorization to Implement Group Analysis in Brain Networks Estimation" Sensors 23, no. 3: 1693. https://doi.org/10.3390/s23031693