Speckle Measurement for Small In-Plane Vibration Using GaAs
Abstract
:1. Introduction
2. Theoretical Analysis
3. Numerical and Experimental Results
3.1. Experimental Arrangement
3.2. Results
3.2.1. Effect of Vibration Amplitude
3.2.2. Effect of Vibration Frequency
3.2.3. Effect of Imaging Magnification
3.2.4. Effect of Average Speckle Size
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, X.; Zhang, B.; Feng, Q.; Xie, X.; Yang, L. Nano-vibration measurements using the photoelectromotive force effect in the GaAs crystal. Instrum. Exp. Tech. 2016, 59, 470–475. [Google Scholar] [CrossRef]
- Li, H.; Jiang, W.; Deng, J.; Yu, R.; Pan, Q. A Sensitive Frequency Range Method Based on Laser Ultrasounds for Micro-Crack Depth Determination. Sensors 2022, 22, 7221. [Google Scholar] [CrossRef]
- Ghafoor, I.; Tse, P.; Rostami, J.; Ng, K.-M. Non-Contact Inspection of Railhead via Laser-Generated Rayleigh Waves and an Enhanced Matching Pursuit to Assist Detection of Surface and Subsurface Defects. Sensors 2021, 21, 2994. [Google Scholar] [CrossRef]
- Kang, K.; Park, K. Noncontact Laser Ultrasound Detection of Cracks Using Hydrophone. Sensors 2021, 21, 3371. [Google Scholar] [CrossRef]
- Passian, A.; Evans, P.G.; Varma, V.K.; Ferrell, T.L.; Thundat, T. Piezoresistive detection of acoustic waves. Rev. Sci. Instrum. 2003, 74, 1031–1035. [Google Scholar] [CrossRef]
- Zaharov, V.; Farahi, R.H.; Snyder, P.; Davison, B.; Passian, A.; Blouin, B.C.C.N. Karhunen-Loeve treatment to remove noise and facilitate data analysis in sensing, spectroscopy and other applications. Analyst 2014, 139, 5927–5935. [Google Scholar] [CrossRef]
- Yu, B.; Tola, K.D.; Lee, C.; Park, S. Improving the Ability of a Laser Ultrasonic Wave-Based Detection of Damage on the Curved Surface of a Pipe Using a Deep Learning Technique. Sensors 2021, 21, 7105. [Google Scholar] [CrossRef]
- Choi, S.; Ota, T.; Nin, F.; Shioda, T.; Suzuki, T.; Hibino, H. Rapid optical tomographic vibrometry using a swept multi-gigahertz comb. Opt. Express 2021, 29, 16749. [Google Scholar] [CrossRef]
- Cao, Y.; Xiong, J.; Liu, X.; Xia, Z.; Wang, W.; Yadav, N.P.; Liu, W. Sensing of ultrasonic fields based on polarization parametric indirect microscopic imaging. Chin. Opt. Lett. 2019, 17, 41702. [Google Scholar] [CrossRef]
- Volikova, A.M.; Lobach, I.A.; Kablukov, S.I. Laser vibrometer-rangefinder based on self-sweeping fiber laser. Opt. Express 2022, 30, 22025. [Google Scholar] [CrossRef]
- Souto Janeiro, A.; Fernández López, A.; Chimeno Manguan, M.; Pérez-Merino, P. Three-dimensional digital image correla-tion based on speckle pattern projection for non-invasive vibrational analysis. Sensors 2022, 22, 9766. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, H. Displacement measurement method based on laser self-mixing interference in the presence of speckle. Chin. Opt. Lett. 2020, 18, 51201. [Google Scholar] [CrossRef]
- Gao, X.; Yang, L.; Wang, Y.; Zhang, B.; Dan, X.; Li, J.; Wu, S. Spatial phase-shift dual-beam speckle interferometry. Appl. Opt. 2018, 57, 414. [Google Scholar] [CrossRef] [PubMed]
- Bryushinin, M.; Kulikov, V.; Sokolov, I.; Delaye, P.; Pauliat, G. Non-steady-state photo-EMF in semi-insulating GaAs under frequency-modulated illumination. Europhys. Lett. 2014, 105, 64003. [Google Scholar] [CrossRef] [Green Version]
- Mansurova, S.; Zarate, P.M.; Rodriguez, P.; Stepanov, S.; Köber, S.; Meerholz, K. Non-steady-state photoelectromotive force effect under linear and periodical phase modulation: Application to detection of Doppler frequency shift. Opt. Lett. 2012, 37, 383–385. [Google Scholar] [CrossRef]
- Kour, R.; Arya, S.; Verma, S.; Singh, A.; Mahajan, P.; Khosla, A. Review-recent advances and challenges in indium gallium nitride (InxGa1-xN) materials for solid state lighting. ECS J. Solid State Sci. Technol. 2019, 9, 15011. [Google Scholar] [CrossRef]
- Young, S.-J.; Liu, Y.-H.; Shiblee, M.D.N.I.; Ahmed, K.; Lai, L.-T.; Nagahara, L.; Thundat, T.; Yoshida, T.; Arya, S.; Furukawa, H.; et al. Flexible Ultraviolet Photodetectors Based on One-Dimensional Gallium-Doped Zinc Oxide Nanostructures. ACS Appl. Electron. Mater. 2020, 2, 3522–3529. [Google Scholar] [CrossRef]
- He, Z.; Asare-Yeboah, K.; Zhang, Z.; Bi, S. Manipulate organic crystal morphology and charge transport. Org. Electron. 2022, 103, 106448. [Google Scholar] [CrossRef]
- He, Z.; Zhang, Z.; Bi, S. Tailoring the molecular weight of polymer additives for organic semiconductors. Mater. Adv. 2022, 3, 1953–1973. [Google Scholar] [CrossRef]
- Stepanov, S.I.; Sokolov, I.A.; Trofimov, G.S.; Vlad, V.I.; Popa, D.; Apostol, I. Measuring vibration amplitudes in the picometer range using moving light gratings in photoconductive GaAs:Cr. Opt. Lett. 1990, 15, 1239–1241. [Google Scholar] [CrossRef]
- Stepanov, S. Chapter 6—Photo-electromotive-force effect in semiconductors. In Handbook of Advanced Electronic and Photonic Materials and Devices; Singh Nalwa, H., Ed.; Academic Press: Burlington, MA, USA, 2001; pp. 205–272. [Google Scholar]
- Stepanov, S.; Montero, P.R.; Flores, M.A.C.; Mixcoatl, J.C.; Lopez, A.A.; Carrasco, L.A.; Sanchez, M.S. Interferometric applications of GaAs adaptive photo-EMF detectors. J. Opt. Technol. 2002, 69, 428. [Google Scholar] [CrossRef]
- Korneev, N.; Mansurova, S.; Rodriguez, P.; Stepanov, S. Fast and slow processes in the dynamics of near-surface space-charge grating formation in GaAs. J. Opt. Soc. Am. B 1997, 14, 396. [Google Scholar] [CrossRef]
- Korneev, N.A.; Mansurova, S.S.; Stepanov, S.I.; Hall, T.J.; Powell, A.K. Non-steady-state photoelectromotive force in semiconductor photorefractive crystals biased by dc field. J. Opt. Soc. Am. B 1996, 13, 2278. [Google Scholar] [CrossRef]
- Sokolov, I.A.; Stepanov, S.I. Detection of optical signals with high-amplitude phase modulation by adaptive photodetectors. Appl. Opt. 1993, 32, 1958–1964. [Google Scholar] [CrossRef]
- Sokolov, I.A.; Stepanov, S.I. Non-steady-state photoelectromotive force in crystals with long photocarrier lifetimes. J. Opt. Soc. Am. B 1993, 10, 1483. [Google Scholar] [CrossRef]
- Korneev, N.A.; Stepanov, S.I. Non-steady-state photoelectromotive force in semiconductor crystals with high light absorption. J. Appl. Phys. 1993, 74, 2736–2741. [Google Scholar] [CrossRef]
- Korneev, N.; Stepanov, S. Measurement of Small Lateral Vibrations of Speckle Patterns Using a Non-steady-state Photo-EMF in GaAs: Cr. J. Mod. Opt. 1991, 38, 2153–2158. [Google Scholar] [CrossRef]
- Mosquera, L.; Frejlich, J. Self-calibrating speckle photo-electromotive force for large vibration amplitude measurement. J. Opt. A Pure Appl. Opt. 2004, 6, 1001–1004. [Google Scholar] [CrossRef]
- Dos Santos, T.O.; Launay, J.C.; Frejlich, J. Photo-electromotive-force from volume speckle pattern vibration with large amplitude. J. Appl. Phys. 2008, 103, 113104. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, T.O.; Frejlich, J.; Shcherbin, K. Photo electromotive force in CdTe:Ge: Manifestation of two photorefractive centers. Appl. Phys. B 2010, 99, 701–707. [Google Scholar] [CrossRef]
- Santos, T.; Launay, J.C.; Odoulov, S.G.; Frejlich, J. The speckle photo-electromotive force on a vanadium-doped CdTe crystal. J. Opt. A Pure Appl. Opt. 2008, 10, 104007. [Google Scholar] [CrossRef]
- Dos Santos, T.O.; Frejlich, J.; Launay, J.C.; Shcherbin, K. Speckle photo electromotive force in CdTe:V and CdTe:Ge for measurement of vibration with large amplitude. Appl. Phys. B 2009, 95, 627–632. [Google Scholar] [CrossRef]
- Heinz, P.; Garmire, E. Optical vibration detection with a photoconductance monitoring array. Appl. Phys. Lett. 2004, 84, 3196–3198. [Google Scholar] [CrossRef]
- Salazar, A. Speckle photo-electromotive force in Bi12SiO20: Effect of the speckle size. Opt. Commun. 2013, 298–299, 207–212. [Google Scholar] [CrossRef]
- Bryushinin, M.; Kulikov, V.; Petrov, A.; Sokolov, I.A.; Romashko, R.V.; Kulchin, Y.N. Non-steady-state photo-EMF interferometer for detection of mechanical oscillations in transparent scattering objects. Appl. Opt. 2020, 59, 2370. [Google Scholar] [CrossRef] [PubMed]
- Gao, X. Study of Ultrasonic Interference Measurement Method Based on the Photoemf Effect. Doctoral Dissertation, Beijing Jiaotong University, Beijing, China, 2017. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Zhang, B.; Feng, Q.; Shen, X.; Xue, Y.; Liu, J. Speckle Measurement for Small In-Plane Vibration Using GaAs. Sensors 2023, 23, 2724. https://doi.org/10.3390/s23052724
Gao J, Zhang B, Feng Q, Shen X, Xue Y, Liu J. Speckle Measurement for Small In-Plane Vibration Using GaAs. Sensors. 2023; 23(5):2724. https://doi.org/10.3390/s23052724
Chicago/Turabian StyleGao, Jiongye, Bin Zhang, Qibo Feng, Xu Shen, Yong Xue, and Jiacheng Liu. 2023. "Speckle Measurement for Small In-Plane Vibration Using GaAs" Sensors 23, no. 5: 2724. https://doi.org/10.3390/s23052724
APA StyleGao, J., Zhang, B., Feng, Q., Shen, X., Xue, Y., & Liu, J. (2023). Speckle Measurement for Small In-Plane Vibration Using GaAs. Sensors, 23(5), 2724. https://doi.org/10.3390/s23052724