Multiparametric Quantitative Analysis of Photodamage to Skin Using Optical Coherence Tomography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Modeling AS Photodamage
2.2. OCT Data Acquisition of AS
2.3. Multidimensional Parameter Quantification of AS Using OCT
2.3.1. Quantitative Analysis of AS Thickness, Cuticle Thickness, and Surface Roughness
2.3.2. Quantitative Analysis of AS Texture Features
2.3.3. Characterization of AS Activity Using OCT Scattering Coefficients
2.4. H&E Staining
2.5. Tissue Viability Testing
2.6. Statistical Analysis
3. Results
3.1. Characterization of UVA Photodamage by AS Thickness, Cuticle Thickness, and Surface Roughness Using OCT
3.2. Characterization of UVA Photodamage Based on Texture Features from OCT Detection of AS
3.3. H&E Staining to Verify the Accuracy of OCT Morphological Characterization
3.4. Characterization of UVA Irradiation Photodamage by Tissue Optical Parameters of OCT
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beele, H. Artificial Skin: Past, Present and Future. Int. J. Artif. Organs 2002, 25, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Amano, S. Characterization and mechanisms of photoageing-related changes in skin. Damages of basement membrane and dermal structures. Exp. Dermatol. 2016, 25, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Guo, Z.; Zhai, J.; Xiong, H.; Zeng, C.; Jin, Y. Assessment of the effect of narrowband UVB and broadband UVB on mice skin using optical coherence tomography. Proc. SPIE 2009, 7519, 751909. [Google Scholar] [CrossRef]
- Jin, S.G.; Padron, F.; Pfeifer, G.P. UVA Radiation, DNA Damage, and Melanoma. ACS Omega 2022, 7, 32936–32948. [Google Scholar] [CrossRef] [PubMed]
- Kuranov, R.; Sapozhnikova, V.; Prough, D.; Cicenaite, I.; Esenaliev, R. Correlation between optical coherence tomography images and histology of pigskin. Appl. Opt. 2007, 46, 1782–1786. [Google Scholar] [CrossRef] [PubMed]
- Gambichler, T.; Pljakic, A.; Schmitz, L. Recent advances in clinical application of optical coherence tomography of human skin. Clin. Cosmet. Investig. Dermatol. 2015, 8, 345–354. [Google Scholar] [CrossRef] [Green Version]
- Yun, Y.E.; Jung, Y.J.; Choi, Y.J.; Choi, J.S.; Cho, Y.W. Artificial skin models for animal-free testing. J. Pharm. Investig. 2018, 48, 215–223. [Google Scholar] [CrossRef]
- Sanabria-de la Torre, R.; Fernández-González, A.; Quiñones-Vico, M.I.; Montero-Vilchez, T.; Arias-Santiago, S. Bioengineered Skin Intended as In Vitro Model for Pharmacosmetics, Skin Disease Study and Environmental Skin Impact Analysis. Biomedicines 2020, 8, 464. [Google Scholar] [CrossRef]
- Suhail, S.; Sardashti, N.; Jaiswal, D.; Rudraiah, S.; Misra, M.; Kumbar, S.G. Engineered Skin Tissue Equivalents for Product Evaluation and Therapeutic Applications. Biotechnol. J. 2019, 14, 1900022. [Google Scholar] [CrossRef]
- Netzlaff, F.; Lehr, C.M.; Wertz, P.W.; Schaefer, U.F. The human epidermis models EpiSkin, SkinEthic and EpiDerm: An eval-uation of morphology and their suitability for testing phototoxicity, irritancy, corrosivity, and substance transport. Eur. J. Pharm. Biopharm. 2005, 60, 167–178. [Google Scholar] [CrossRef]
- Germain, L.; Laval, L.C.D.Q.-U.; Larouche, D.; Nedelec, B.; Perreault, I.; Duranceau, L.; Bortoluzzi, P.; Cloutier, C.B.; Genest, H.; Caouette-Laberge, L.; et al. Autologous bilayered self-assembled skin substitutes (SASSs) as permanent grafts: A case series of 14 severely burned patients indicating clinical effectiveness. Eur. Cells Mater. 2018, 36, 128–141. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Zhao, J.; Zhang, J.; Li, B.; Gou, Z.; Gou, M.; Li, X. Bioprinting of skin constructs for wound healing. Burn. Trauma 2018, 6, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitt, R.; Marx, U. Structural analysis of artificial skin equivalents. In Optical Coherence Tomography and Coherence Techniques V; Optica Publishing Group: Washington, DC, USA, 2011; p. 80911Q. [Google Scholar]
- Watson, R.E.B.; Griffiths, C.E.M.; Craven, N.M.; Shuttleworth, C.A.; Kielty, C.M. Fibrillin-Rich Microfibrils are Reduced in Photoaged Skin. Distribution at the Dermal–Epidermal Junction. J. Investig. Dermatol. 1999, 112, 782–787. [Google Scholar] [CrossRef] [PubMed]
- Fisher, P.L.; Hahn, T.P.; Robey, I.F.; Uitto, V.J.; Kopp, K.J.; Chen, Y.; Lakkakorpi, J.; Bernstein, L.E.; Brown, G.D. Long-term sun exposure alters the collagen of the papillary dermis. J. Am. Acad. Dermatol. 1996, 34, 209–218. [Google Scholar]
- Naylor, E.C.; Watson, R.E.; Sherratt, M.J. Molecular aspects of skin ageing. Maturitas 2011, 69, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Ai, P.Y.; Cheng, J.; Li, A.; Srivastava, R.; Jiang, L.; Wong, D.W.; Hong, L.T. Automated in vivo 3D high-definition optical coherence tomography skin analysis system. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 3895–3898. [Google Scholar]
- Vasquez-Pinto, L.M.C.; Maldonado, E.P.; Raele, M.P.; Amaral, M.M.; de Freitas, A.Z. Optical coherence tomography applied to tests of skin care products in humans-a case study. Ski. Res. Technol. 2015, 21, 90–93. [Google Scholar] [CrossRef]
- Greaves, N.S.; Iqbal, S.A.; Hodgkinson, T.; Morris, J.; Benatar, B.; Alonso-Rasgado, T.; Baguneid, M.; Bayat, A. Skin substitute assisted repair shows reduced dermal fibrosis in acute human wounds validated simultaneously by histology and optical coherence tomography. Wound Repair Regen. 2015, 23, 483–494. [Google Scholar] [CrossRef]
- Smith, L.E.; Lu, Z.; Bonesi, M.; Smallwood, R.; Matcher, S.J.; MacNeil, S. Using swept source optical coherence tomography to monitor wound healing in tissue engineered skin. Proc. SPIE 2010, 7566, 75660I. [Google Scholar] [CrossRef]
- Ulrich, M.; Themstrup, L.; de Carvalho, N.; Manfredi, M.; Grana, C.; Ciardo, S.; Kästle, R.; Holmes, J.; Whitehead, R.; Jemec, G.B.E.; et al. Dynamic Optical Coherence Tomography in Dermatology. Dermatology 2016, 232, 298–311. [Google Scholar] [CrossRef]
- Spöler, F.; Först, M.; Marquardt, Y.; Hoeller, D.; Kurz, H.; Merk, H.; Abuzahra, F. High-resolution optical coherence tomography as a non-destructive monitoring tool for the engineering of skin equivalents. Ski. Res. Technol. 2010, 12, 261–267. [Google Scholar] [CrossRef]
- Mogensen, M.; Thrane, L.; Jørgensen, T.M.; Andersen, P.E.; Jemec, G. OCT imaging of skin cancer and other dermatological diseases. J. Biophotonics 2009, 2, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, R.; Kirkpatrick, S.J.; Wang, R.; Marx, U.; Walles, H.; Heymer, A. Optical coherence tomography investigation of growth cycles of engineered skin tissue. Proc. SPIE 2010, 7566, 75660H. [Google Scholar] [CrossRef]
- Kulikov, D.; Makmatov-Rys, M.; Raznitsyna, I.; Glazkova, P.; Gerzhik, A.; Glazkov, A.; Rogatkin, D. Methods of Non-Invasive In Vivo Optical Diagnostics in the Assessment of Structural Changes in the Skin Induced by Ultraviolet Exposure in an Experimental Model. Diagnostics 2021, 11, 1464. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Huang, Z.; Wang, Y.; Li, H. Characterizing UVB-induced skin tumor process using optical coherence tomography. J. Innov. Opt. Health Sci. 2016, 9, 1650014. [Google Scholar] [CrossRef] [Green Version]
- Neerken, S.; Lucassen, G.W.; Bisschop, M.A.; Lenderink, E.; Nuijs, T. Characterization of age-related effects in human skin: A comparative study that applies confocal laser scanning microscopy and optical coherence tomography. J. Biomed. Opt. 2004, 9, 274–281. [Google Scholar] [CrossRef]
- Wu, S.L.; Li, H.; Zhang, X.M.; Li, Z.F. Optical features for chronological aging and photoaging skin by optical coherence tomography. Lasers Med. Sci. 2013, 28, 445–450. [Google Scholar] [CrossRef]
- Boone, M.A.L.M.; Suppa, M.; Marneffe, A.; Miyamoto, M.; Jemec, G.B.E.; Del Marmol, V. High-definition optical coherence tomography intrinsic skin ageing assessment in women: A pilot study. Arch. Dermatol. Res. 2015, 307, 705–720. [Google Scholar] [CrossRef] [Green Version]
- Askaruly, S.; Ahn, Y.; Kim, H.; Vavilin, A.; Jung, W. Quantitative Evaluation of Skin Surface Roughness Using Optical Coherence Tomography In Vivo. IEEE J. Sel. Top. Quantum Electron. 2018, 25, 7202308. [Google Scholar] [CrossRef]
- Zhao, R.; Tang, H.; Xu, C.; Ge, Y.; Wang, L.; Xu, M. Automatic quantitative analysis of structure parameters in the growth cycle of artificial skin using optical coherence tomography. J. Biomed. Opt. 2021, 26, 095001. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, Z.; Zhuang, Z.; Zhai, J.; Xiong, H.; Zeng, C. Quantitative optical coherence tomography of skin lesions induced by different ultraviolet B sources. Phys. Med. Biol. 2010, 55, 6175–6185. [Google Scholar] [CrossRef]
- Choi, W.J.; Li, Y.; Wang, R.K. Monitoring acute stroke progression: Multi-parametric OCT imaging of cortical perfusion, flow, and tissue scattering in a mouse model of permanent focal ischemia. IEEE Trans. Med. Imaging 2019, 38, 1427–1437. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, V.; Gupta, S.; Chaudhary, G.; Balodi, A.; Khari, M.; García-Díaz, V. An Enhanced Texture-Based Feature Extraction Approach for Classification of Biomedical Images of CT-Scan of Lungs. Int. J. Interact. Multimed. Artif. Intell. 2021, 6, 18. [Google Scholar] [CrossRef]
- Adabi, S.; Conforto, S.; Hosseinzadeh, M.; Noe, S.; Daveluy, S.; Mehregan, D.; Nasiriavanaki, M.R. Textural analysis of optical coherence tomography skin images: Quantitative differentiation between healthy and cancerous tissues. Proc. SPIE 2017, 100533, 100533F. [Google Scholar] [CrossRef]
- Laishram, A.; Thongam, K. Automatic Classification of Oral Pathologies Using Orthopantomogram Radiography Images Based on Convolutional Neural Network. Int. J. Interact. Multimed. Artif. Intell. 2021, 7, 69–77. [Google Scholar] [CrossRef]
- Kepp, T.; Droigk, C.; Casper, M.; Evers, M.; Hüttmann, G.; Salma, N.; Manstein, D.; Heinrich, M.P.; Handels, H. Segmentation of mouse skin layers in optical coherence tomography image data using deep convolutional neural networks. Biomed. Opt. Express 2019, 10, 3484–3496. [Google Scholar] [CrossRef]
- Yasuaki, H.; Yoshiaki, Y.; Shingo, S.; Masayuki, M.; Tomoko, S.; Violeta, M.; Masahiro, Y.; Shuichi, M.; Takeshi, Y.; Tsutomu, A.; et al. Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography. Opt. Express 2006, 14, 1862–1877. [Google Scholar]
- Ai, P.Y.; Cheng, J.; Li, A.; Wall, C.; Hong, L.T. Skin surface topographic assessment using in vivo high-definition optical coherence tomography. In Proceedings of the 2015 10th International Conference on Information, Communications and Signal Processing (ICICS), Singapore, 2–4 December 2015; pp. 1–4. [Google Scholar]
- Gossage, K.W.; Tkaczyk, T.S.; Rodriguez, J.J.; Barton, J.K. Texture analysis of optical coherence tomography images: Feasibility for tissue classification. J. Biomed. Opt. 2003, 8, 570–575. [Google Scholar] [CrossRef]
- Van der Meer, F.J.; Faber, D.J.; Aalders, M.C.G.; Poot, A.A.; Vermes, I.; van Leeuwen, T.G. Apoptosis- and necrosis-induced changes in light attenuation measured by optical coherence tomography. Lasers Med. Sci. 2010, 25, 259–267. [Google Scholar] [CrossRef] [Green Version]
- Bruin, D.M.D.; Broekgaarden, M.; Gemert, M.J.C.V.; Heger, M.; Rosette, J.J.D.L.; Leeuwen, T.G.V.; Faber, D.J. Assessment of apoptosis induced changes in scattering using optical coherence tomography. J. Biophotonics 2016, 9, 913–923. [Google Scholar] [CrossRef]
- Li, K.; Liang, W.; Yang, Z.; Liang, Y.; Wan, S. Robust, Accurate Depth-resolved Attenuation Characterization in Optical Coherence Tomography. Biomed. Opt. Express 2019, 11, 672–687. [Google Scholar] [CrossRef]
- Li, A.; Cheng, J.; Ai, P.Y.; Wall, C.; Jiang, L. Epidermal segmentation in high-definition optical coherence tomography. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 3045–3048. [Google Scholar]
- Burunova, V.V.; Gisina, A.M.; Kholodenko, I.V.; Lupatov, A.Y.; Shragina, O.A.; Yarygin, K.N. Standardization of Bio-chemical Profile of Mesenchymal Cell Materials by Probing the Level of Dehydrogenase Activity. Bull. Exp. Biol. Med. 2010, 149, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Landau, S.; Everitt, B.S. A Handbook of Statistical Analyses Using SPSS; Chapman and Hall/CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
Morphological Parameter | Model Groups | |||
---|---|---|---|---|
Before Irradiation | NC-Day4 | UV-Day4 | UV + VC-Day4 | |
Mean thickness (μm) | 89.46 ± 2.46 | 92.24 ± 2.14 | 99.84 ± 3.29 | 95.17 ± 1.86 |
Mean cuticle thickness (μm) | 22.37 ± 2.75 | 26.87 ± 2.00 | 42.04 ± 5.67 | 33.61 ± 3.21 |
Parameter | Model Groups | |||
---|---|---|---|---|
Before Irradiation | NC-Day4 | UV + VC-Day4 | UV-Day4 | |
Optical Density | 1.20 ± 0.08 | 1.17 ± 0.02 | 1.05 ± 0.02 | 0.95 ± 0.02 |
Scattering Coefficient (mm−1) | 2.16 ± 0.09 | 2.12 ± 0.16 | 1.87 ± 0.05 | 1.78 ± 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, H.; Xu, C.; Ge, Y.; Xu, M.; Wang, L. Multiparametric Quantitative Analysis of Photodamage to Skin Using Optical Coherence Tomography. Sensors 2023, 23, 3589. https://doi.org/10.3390/s23073589
Tang H, Xu C, Ge Y, Xu M, Wang L. Multiparametric Quantitative Analysis of Photodamage to Skin Using Optical Coherence Tomography. Sensors. 2023; 23(7):3589. https://doi.org/10.3390/s23073589
Chicago/Turabian StyleTang, Han, Chen Xu, Yakun Ge, Mingen Xu, and Ling Wang. 2023. "Multiparametric Quantitative Analysis of Photodamage to Skin Using Optical Coherence Tomography" Sensors 23, no. 7: 3589. https://doi.org/10.3390/s23073589