Multi-Scale Feature Fusion of Covariance Pooling Networks for Fine-Grained Visual Recognition
Abstract
:1. Introduction
- We propose a novel fine-grained image classification method based on covariance pooling, which captures second-order information in fine-grained images.
- We propose a multi-scale feature fusion technique, which generates multi-scale feature maps by different pooling methods and different pooling kernel parameters, and then fuses them with the original feature map to obtain better feature representations.
2. Related Work
2.1. Fine-Grained Classification Techniques
2.1.1. Traditional Algorithms Based on Feature Extraction
2.1.2. Deep Learning-Based Algorithms
2.2. Feature Fusion Techniques
3. Method
3.1. Original Bilinear Pooling Network
3.1.1. Bilinear Convolutional Neural Network
3.1.2. Iterative Matrix Square Root Normalization of the Covariance Pooling Network
3.2. Multi-Scale Covariance Pooling Network
4. Experiment
4.1. Datasets and Implementation Details
4.2. Ablation Study
4.3. Visualization
4.4. Comparison to Other Methods
4.4.1. Comparison to Original Covariance Pooling Methods
4.4.2. Comparison with the Existing Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, J.; Duan, J.; Li, T.; Hu, C.; Liang, J.; Shi, T. Tool Wear Monitoring in Milling Based on Fine-Grained Image Classification of Machined Surface Images. Sensors 2022, 22, 8416. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhang, Y.; Wei, Q. Few-Shot Fine-Grained Image Classification via GNN. Sensors 2022, 22, 7640. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Mamat, H.; Xu, X.; Aysa, A.; Ubul, K. Scene Uyghur Text Detection Based on Fine-Grained Feature Representation. Sensors 2022, 22, 4372. [Google Scholar] [CrossRef] [PubMed]
- Karlinsky, L.; Shtok, J.; Tzur, Y.; Tzadok, A. Fine-grained recognition of thousands of object categories with single-example training. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Herranz, L.; Jiang, S.; Li, X. Scene recognition with CNNs: Objects, scales and dataset bias. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016. [Google Scholar]
- Lin, T.Y.; RoyChowdhury, A.; Maji, S. Bilinear convolutional neural networks for fine-grained visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 1309–1322. [Google Scholar] [CrossRef]
- Li, P.; Xie, J.; Wang, Q.; Zuo, W. Is second-order information helpful for large-scale visual recognition? In Proceedings of the IEEE Conference on Computer Vision, Venice, Italy, 22–29 October 2017. [Google Scholar]
- Welinder, P.; Branson, S.; Mita, T.; Wah, C.; Schroff, F.; Belongie, S.; Perona, P. Caltech-UCSD Birds 200. California Institute of Technology. CNS-TR-2010-001. 2010. Available online: https://www.vision.caltech.edu/visipedia/CUB-200.html (accessed on 26 October 2011).
- Quattoni, A.; Torralba, A. Recognizing indoor scenes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009. [Google Scholar]
- Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the IEEE Conference on Computer Vision, Fort Collins, CO, USA, 23–25 June 1999. [Google Scholar]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–26 June 2005. [Google Scholar]
- Jégou, H.; Douze, M.; Schmid, C.; Pérez, P. Aggregating local descriptors into a compact image representation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010. [Google Scholar]
- Perronnin, F.; Dance, C. Fisher kernels on visual vocabularies for image categorization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 18–23 June 2007. [Google Scholar]
- Law, M.T.; Thome, N.; Cord, M. Bag-of-words image representation: Key ideas and further insight. In Fusion in Computer Vision: Understanding Complex Visual Content; Springer: Berlin/Heidelberg, Germany, 2014; pp. 29–52. [Google Scholar]
- LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Szegedy, C.; Liu, W.; Jia, Y.Q.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 23–28 June 2014. [Google Scholar]
- Sharif Razavian, A.; Azizpour, H.; Sullivan, J.; Carlsson, S. CNN features off-the-shelf: An astounding baseline for recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 23–28 June 2014. [Google Scholar]
- Xie, L.; Zheng, L.; Wang, J.; Yuille, A.; Tian, Q. Interactive: Inter-layer activeness propagation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016. [Google Scholar]
- Xie, L.; Hong, R.; Zhang, B.; Tian, Q. Image classification and retrieval are one. In Proceedings of the ACM on International Conference on Multimedia Retrieval, Shanghai, China, 23–26 June 2015. [Google Scholar]
- Zhang, N.; Donahue, J.; Girshick, R.; Darrell, T. Part-based R-CNNs for fine-grained category detection. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014. [Google Scholar]
- Branson, S.; Van Horn, G.; Belongie, S.; Perona, P. Bird species categorization using pose normalized deep convolutional nets. arXiv 2014, arXiv:1406.2952. [Google Scholar]
- Shih, K.J.; Mallya, A.; Singh, S.; Hoiem, D. Part localization using multi-proposal consensus for fine-grained categorization. arXiv 2015, arXiv:1507.06332. [Google Scholar]
- Lin, D.; Shen, X.; Lu, C.; Jia, J. Deep lac: Deep localization, alignment and classification for fine-grained recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 8–10 June 2015. [Google Scholar]
- Xiao, T.; Xu, Y.; Yang, K.; Zhang, J.; Peng, Y.; Zhang, Z. The application of two-level attention models in deep convolutional neural network for fine-grained image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 8–10 June 2015. [Google Scholar]
- Liu, X.; Xia, T.; Wang, J.; Lin, Y. Fully convolutional attention localization networks: Efficient attention localization for fine-grained recognition. arXiv 2016, arXiv:1603.06765. [Google Scholar]
- Zhao, B.; Wu, X.; Feng, J.; Peng, Q.; Yan, S. Diversified visual attention networks for fine-grained object classification. IEEE Trans. Multimed. 2017, 19, 1245–1256. [Google Scholar] [CrossRef] [Green Version]
- Ge, Z.Y.; McCool, C.; Saerson, C.; Corke, P. Subset feature learning for fine-grained category classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 8–10 June 2015. [Google Scholar]
- Wang, Z.; Wang, X.; Wang, G. Learning fine-grained features via a CNN tree for large-scale classification. Neurocomputing 2018, 275, 1231–1240. [Google Scholar] [CrossRef] [Green Version]
- Ge, Z.Y.; Bewley, A.; McCool, C.; Upcroft, B.; Corke, P.; Sanderson, C. Fine-grained classification via mixture of deep convolutional neural networks. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Placid, NY, USA, 7–10 March 2016. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention(MICCAI), Munich, Germany, 5–9 October 2015. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Pu, S.; He, Y.; Li, Z.; Zheng, M. Multimodal Topic Learning for Video Recommendation. arXiv 2020, arXiv:2010.13373. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Feichtenhofer, C.; Pinz, A.; Zisserman, A. Convolutional two-stream network fusion for video action recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Yun, S.; Han, D.; Oh, S.J.; Chun, S.; Choe, J.; Yoo, Y. CutMix: Regularization strategy to train strong classifiers with localizable features. In Proceedings of the IEEE Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar]
- Kim, H.J.; Frahm, J.M. Hierarchy of alternating specialists for scene recognition. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Ge, W.; Lin, X.; Yu, Y. Weakly supervised complementary parts models for fine-grained image classification from the bottom up. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019. [Google Scholar]
- Siyao, L.; Yuhong, L.; Rongfen, Z. Fine-Grained Image Classification Based on Multi-Scale Feature Fusion. Laser Optoelectron. Prog. 2020, 57, 7. [Google Scholar] [CrossRef]
- Xia, S.; Zeng, J.; Leng, L.; Fu, X. WS-AM: Weakly supervised attention map for scene recognition. Electronics 2019, 8, 1072. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, P.; Wang, Y.; Qiao, Y. Learning attentive pairwise interaction for fine-grained classification. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020. [Google Scholar]
- Laranjeira, C.; Lacerda, A.; Nascimento, E.R. On modeling context from objects with a long short-term memory for indoor scene recognition. In Proceedings of the SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), Rio de Janeiro, Brazil, 28–30 October 2019. [Google Scholar]
- Gao, Y.; Han, X.; Wang, X.; Huang, W.; Scott, M. Channel interaction networks for fine-grained image categorization. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020. [Google Scholar]
- Sorkhi, A.G.; Hassanpour, H.; Fateh, M. A comprehensive system for image scene classification. Multimed. Tools Appl. 2020, 79, 18033–18058. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Seong, H.; Hyun, J.; Kim, E. FOSNet: An end-to-end trainable deep neural network for scene recognition. IEEE Access 2020, 8, 82066–82077. [Google Scholar] [CrossRef]
- Wang, G.; Cheng, L.; Lin, J.; Dai, Y.; Zhang, T. Fine-grained classification based on multi-scale pyramid convolution networks. PLoS ONE 2021, 16, E0254054. [Google Scholar] [CrossRef]
- López-Cifuentes, A.; Escudero-Vinolo, M.; Bescós, J.; García-Martín, A. Semantic-aware scene recognition. Pattern Recognit. 2020, 102, 107256. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Wang, X.; Tao, D. SnapMix: Semantically proportional mixing for augmenting fine-grained data. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 2–9 February 2021. [Google Scholar]
- Liu, K.; Moon, S. Dynamic Parallel Pyramid Networks for Scene Recognition. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–11. [Google Scholar] [CrossRef]
- Lee, J.; Kim, E.; Yoon, S. Anti-adversarially manipulated attributions for weakly and semi-supervised semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Virtual, 19–25 June 2021. [Google Scholar]
- Li, X.; Xiong, H.; Xu, C.; Dou, D. Smile: Self-distilled mixup for efficient transfer learning. arXiv 2021, arXiv:2103.13941. [Google Scholar]
- Guang, J.; Liang, J. Cmsea: Compound model scaling with efficient attention for fine-grained image classification. IEEE Access 2022, 10, 18222–18232. [Google Scholar] [CrossRef]
- Lin, C.; Lee, F.; Xie, L.; Cai, J.; Chen, H.; Liu, L.; Chen, Q. Scene recognition using multiple representation network. Appl. Soft Comput. 2022, 118, 108530. [Google Scholar] [CrossRef]
- Liu, X.; Wang, L.; Han, X. Transformer with peak suppression and knowledge guidance for fine-grained image recognition. Neurocomputing 2022, 492, 137–149. [Google Scholar] [CrossRef]
- Fan, X.; Zhu, B.; Gao, X.; Wang, B.; Wang, C.; Xu, G. Indoor Scene Classification Algorithm Based on an Object Vector for Robot Applications. In Proceedings of the International Conference on Artificial Intelligence in Electronics Engineering, Phuket, Thailand, 15–17 January 2022. [Google Scholar]
- Liu, W.; Cao, C.; Liu, J.; Ren, C.; Wei, Y.; Guo, H. Fine-grained image inpainting with scale-enhanced generative adversarial network. Pattern Recognit. Lett. 2021, 143, 81–87. [Google Scholar] [CrossRef]
- Lu, S.; Zhu, X.; Wu, Y.; Wan, X.; Gao, F. Outfit compatibility prediction with multi-layered feature fusion network. Pattern Recognit. Lett. 2021, 147, 150–156. [Google Scholar] [CrossRef]
Scale | Multi-Scale Approach | Baseline | Accuracy | Baseline | Accuracy | ||
---|---|---|---|---|---|---|---|
FC | ALL | FC | ALL | ||||
(1) | Avg pooling (2,2,0) | VGG16 | 78.50 | 84.96 | VGG19 | 77.79 | 84.94 |
(2) | Max pooling (2,2,0) | 78.24 | 84.57 | 77.55 | 84.80 | ||
(3) | Avg pooling (3,2,0) | 79.04 | 84.67 | 78.05 | 84.79 | ||
(4) | Max pooling (3,2,0) | 78.29 | 84.96 | 77.10 | 85.13 | ||
(5) | Avg pooling (3,3,1) | 78.89 | 84.74 | 76.27 | 84.21 | ||
(6) | Max pooling (3,3,1) | 77.96 | 84.17 | 74.65 | 83.87 | ||
(7) | (1)+(1) | VGG16 | 78.79 | 84.56 | VGG19 | 77.79 | 84.67 |
(8) | (2)+(2) | 78.19 | 84.56 | 77.55 | 85.01 | ||
(9) | (1)+(2) | 78.19 | 84.39 | 77.55 | 84.86 | ||
(10) | (1)+(4) | 77.93 | 84.37 | 77.10 | 84.39 | ||
(11) | (1)+(5) | 78.79 | 85.12 | 77.79 | 84.96 | ||
(12) | (4)+(5) | 78.29 | 84.94 | 77.10 | 84.99 | ||
(13) | (1)+(4)+(5) | 78.31 | 84.99 | 77.12 | 85.13 |
Scale | Multi-Scale Approach | Baseline | Accuracy | Baseline | Accuracy | ||
---|---|---|---|---|---|---|---|
FC | ALL | FC | ALL | ||||
(1) | Avg pooling (2,2,0) | VGG16 | 77.64 | 79.69 | VGG19 | 76.86 | 79.94 |
(2) | Max pooling (2,2,0) | 78.20 | 79.97 | 76.90 | 80.28 | ||
(3) | Avg pooling (3,2,0) | 77.43 | 80.05 | 77.93 | 81.00 | ||
(4) | Max pooling (3,2,0) | 77.49 | 80.31 | 76.31 | 80.14 | ||
(5) | Avg pooling (3,3,1) | 77.28 | 80.04 | 76.72 | 79.51 | ||
(6) | Max pooling (3,3,1) | 77.25 | 80.14 | 77.43 | 80.13 | ||
(7) | (1)+(1) | VGG16 | 78.79 | 80.05 | VGG19 | 77.86 | 80.77 |
(8) | (2)+(2) | 77.59 | 80.02 | 76.55 | 79.96 | ||
(9) | (1)+(2) | 77.57 | 80.24 | 76.87 | 80.18 | ||
(10) | (1)+(4) | 77.46 | 80.08 | 76.78 | 80.15 | ||
(11) | (1)+(5) | 77.35 | 80.34 | 77.77 | 80.64 | ||
(12) | (4)+(5) | 77.52 | 80.11 | 76.57 | 79.97 | ||
(13) | (1)+(4)+(5) | 76.32 | 79.59 | 76.64 | 80.07 |
Scale | Multi-Scale Approach | Baseline | Accuracy | Baseline | Accuracy | ||
---|---|---|---|---|---|---|---|
CUB200 | MIT Indoor67 | CUB200 | MIT Indoor67 | ||||
(1) | Avg pooling (2,2,0) | ResNet50 | 91.18 | 87.62 | DenseNet161 | 94.04 | 91.39 |
(2) | Max pooling (2,2,0) | 91.02 | 88.20 | 93.78 | 91.48 | ||
(3) | Avg pooling (3,2,0) | 91.36 | 88.56 | 94.14 | 92.10 | ||
(4) | Max pooling (3,2,0) | 90.96 | 87.28 | 93.69 | 90.48 | ||
(5) | Avg pooling (3,3,1) | 90.97 | 88.70 | 93.48 | 91.22 | ||
(6) | Max pooling (3,3,1) | 90.72 | 87.70 | 93.03 | 91.77 | ||
(7) | (1)+(1) | ResNet50 | 91.43 | 87.82 | DenseNet161 | 94.16 | 91.17 |
(8) | (2)+(2) | 91.04 | 87.94 | 93.88 | 89.42 | ||
(9) | (1)+(2) | 91.28 | 87.57 | 93.92 | 91.52 | ||
(10) | (1)+(3) | 91.14 | 86.91 | 93.24 | 91.27 | ||
(11) | (1)+(5) | 91.31 | 87.39 | 94.29 | 90.14 | ||
(12) | (3)+(5) | 91.31 | 87.37 | 93.44 | 91.44 | ||
(13) | (1)+(3)+(5) | 91.61 | 87.55 | 93.41 | 92.13 |
Model | Scale | Multi-Scale Approach | Baseline | Mode | |
---|---|---|---|---|---|
Bicubic | Bilinear | ||||
MSiSQRT-COV | (1) | Avg pooling (2,2,0) | ResNet50 | 87.49 | 87.62 |
(2) | Max pooling (2,2,0) | 88.10 | 88.20 | ||
(3) | Avg pooling (3,2,0) | 87.34 | 88.56 | ||
(4) | Max pooling (3,2,0) | 86.86 | 87.28 | ||
(5) | Avg pooling (3,3,1) | 87.34 | 88.90 | ||
(6) | Max pooling (3,3,1) | 87.67 | 87.70 |
Method | Baseline | CUB200 | MIT Indoor67 |
---|---|---|---|
Accuracy | Accuracy | ||
BCNN | VGG16 | 84.1 | 78.9 |
VGG19 | 84.3 | 79.5 | |
Multi-scale BCNN | VGG16 | 85.0 | 80.3 |
VGG19 | 85.1 | 81.0 | |
iSQRT-COV | ResNet50 | 87.0 | 86.4 |
DenseNet161 | 93.2 | 90.6 | |
Multi-scale iSQRT-COV | ResNet50 | 91.6 | 88.7 |
DenseNet161 | 94.3 | 92.1 |
CUB200 | MIT Indoor67 | ||||||
---|---|---|---|---|---|---|---|
Method | Baseline | Accuracy | Year | Method | Baseline | Accuracy | Year |
SENet [36] | SENet-154 | 80.8 | 2018 | MS-CNNs [5] | VGG16 | 86.04 | 2016 |
CutMix [37] | ResNet50 | 83.6 | 2019 | HoAS [38] | AlexNet | 88.2 | 2018 |
CPM [39] | GoogLeNet | 87.7 | 2019 | SENet [36] | ResNet101 | 89.1 | 2018 |
MS feature fusion [40] | ResNet101 | 85.7 | 2020 | WS-AM [41] | VGG11 | 85.7 | 2019 |
API-NET [42] | DenseNet-161 | 87.7 | 2020 | M2M BiLSTM [43] | ResNet50 | 88.3 | 2019 |
CIN [44] | ResNet-101 | 88.1 | 2020 | Two-class SVM-fuzzy [45] | ResNet50 | 73.6 | 2020 |
ViT [46] | ViT-B-16 | 90.6 | 2021 | FOSNet [47] | ResNet50 | 90.3 | 2020 |
WS-DAN [48] | ResNet50 | 84.91 | 2021 | MMD [49] | UperNet 50 | 87.10 | 2020 |
SnapMix [50] | ResNet-101 | 89.6 | 2021 | DPP [51] | ResNet101 | 90.8 | 2021 |
RCL [52] | ResNet50 | 89.8 | 2022 | SMILE [53] | ResNet50 | 85.1 | 2021 |
CMSEA [54] | EfficientNetV2-S | 90.6 | 2022 | MRNet [55] | ResNet50 | 88.1 | 2022 |
TPSKG [56] | ViT-B-16 | 91.3 | 2022 | PlacesNet+ObjectNet [57] | MR-CNNs | 90.3 | 2022 |
Ours | DenseNet161 | 94.3 | 2022 | Ours | DenseNet161 | 92.1 | 2022 |
ResNet50 | 91.6 | 2022 | ResNet50 | 88.7 | 2022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, L.; Yu, T.; Yang, J. Multi-Scale Feature Fusion of Covariance Pooling Networks for Fine-Grained Visual Recognition. Sensors 2023, 23, 3970. https://doi.org/10.3390/s23083970
Qian L, Yu T, Yang J. Multi-Scale Feature Fusion of Covariance Pooling Networks for Fine-Grained Visual Recognition. Sensors. 2023; 23(8):3970. https://doi.org/10.3390/s23083970
Chicago/Turabian StyleQian, Lulu, Tan Yu, and Jianyu Yang. 2023. "Multi-Scale Feature Fusion of Covariance Pooling Networks for Fine-Grained Visual Recognition" Sensors 23, no. 8: 3970. https://doi.org/10.3390/s23083970
APA StyleQian, L., Yu, T., & Yang, J. (2023). Multi-Scale Feature Fusion of Covariance Pooling Networks for Fine-Grained Visual Recognition. Sensors, 23(8), 3970. https://doi.org/10.3390/s23083970