A High-Precision Real-Time Pose Measurement Method for the Primary Lens of Large Aperture Space Telescope Based on Laser Ranging
Abstract
:1. Introduction
2. Telescope System Design
3. Principle of Measurement Method
3.1. Establishment of Optical Model of Measurement System
3.2. Pose Calculation Algorithm
4. Experiments
4.1. Laser Rangefinders
4.2. Ground Test
4.3. Error Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arbabi, E.; Arbabi, A.; Kamali, S.M.; Horie, Y.; Faraon, A. High efficiency double-wavelength dielectric metasurface lenses with dichroic birefringent meta-atoms. Opt. Express 2016, 24, 18468–18476. [Google Scholar] [CrossRef] [PubMed]
- Genevet, P.; Capasso, F.; Aieta, F.; Khorasaninejad, M.; Devlin, R. Recent advances in planar optics: From plasmonic to dielectric metasurfaces. Optica 2017, 4, 139–152. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiao, J.; Wang, B.; Jin, J.; Su, Y. Transmissive diffractive membrane optic for large aperture lightweight optical telescope. Proc. SPIE 2015, 9622, 96220G. [Google Scholar]
- Liu, D.; Wang, L.; Yang, W.; Wu, S.; Fan, B.; Wu, F. Stray light characteristics of the diffractive telescope system. Opt. Eng. 2018, 57, 025105. [Google Scholar] [CrossRef]
- MacEwen, A.H.; Breckinridge, J.B. Large diffractive/refractive apertures for space and airborne telescopes. Proc. SPIE 2013, 8739, 873904. [Google Scholar]
- Britten, A.J.; Dixit, N.S.; DeBruyckere, M.; Steadfast, D.; Hackett, J.; Farmer, B.; Poe, G.; Patrick, B.; Atcheson, D.P.; Domber, L.J.; et al. Large-aperture fast multilevel Fresnel zone lenses in glass and ultrathin polymer films for visible and near-infrared imaging applications. Appl. Opt. 2014, 53, 2312–2316. [Google Scholar] [CrossRef]
- Atcheson, P.; Stewart, C.; Domber, J.; Whiteaker, K.; Cole, J.; Spuhler, P.; Seltzer, A.; Britten, A.J.; Dixit, N.S.; Farmer, B.; et al. MOIRE-Initial Demonstration of a Transmissive Diffractive Membrane Optic for Large Lightweight Optical Telescopes. Proc. SPIE 2012, 8442, 844221. [Google Scholar]
- Rahlves, M.; Rezem, M.; Boroz, K.; Schlangen, S.; Reithmeier, E.; Roth, B. Flexible, fast, and low-cost production process for polymer based diffractive optics. Opt. Express 2015, 23, 3614–3622. [Google Scholar] [CrossRef]
- Zhao, B.; Shi, W.; Zhang, J.; Zhang, M.; Qi, X.; Li, J.; Li, F.; Tan, J. Six Degrees of Freedom Displacement Measurement System for Wafer Stage Composed of Hall Sensors. Sensors 2018, 18, 2030. [Google Scholar] [CrossRef]
- Fan, K.C.; Chen, M.J.; Huang, W.M. A Six-Degree-Of-Freedom Measurement System for The Motion Accuracy of Linear Stages. Int. J. Mach. Tools Manufact. 1998, 38, 155–164. [Google Scholar] [CrossRef]
- Hu, Y.; Miyashita, L.; Watanabe, Y.; Ishikawa, M. Robust 6-DOF motion sensing for an arbitrary rigid body by multi-view laser Doppler measurements. Opt. Express 2017, 25, 30371–30387. [Google Scholar] [CrossRef] [PubMed]
- Henselmans, R.; Nijkerk, D.; Lemmen, M.; Rijnveld, N.; Kamphues, F. Design, analysis, and testing of the optical tube assemblies for the ESO VLT four laser guide star facility. Proc. SPIE 2012, 8447, 84474N. [Google Scholar]
- Kim, D.W.; Esparza, M.; Quach, H.; Rodriguez, S.; Kang, H.; Feng, Y.; Choi, H. Optical Technology for Future Telescopes. Proc. SPIE 2021, 11761, 1176103. [Google Scholar]
- Salvadé, Y.; Schuhler, N.; Lévêque, S.; Floch, L.S. High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source. Appl. Opt. 2008, 47, 2715–2720. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Liu, Z.; Tao, L.; Deng, Z. Frequency-scanning interferometry using a time-varying Kalman filter for dynamic tracking measurements. Opt. Express 2017, 25, 25782–25796. [Google Scholar] [CrossRef]
- Yan, L.; Xie, J.; Chen, B.; Lou, Y.; Zhang, S. Absolute distance measurement using laser interferometric wavelength leverage with a dynamic-sideband-locked synthetic wavelength generation. Opt. Express 2021, 29, 8344–8357. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Kim, Y.; Kim, S. Parallel determination of absolute distances to multiple targets by time-of-flight measurement using femtosecond light pulses. Opt. Express 2015, 23, 25874–25882. [Google Scholar] [CrossRef]
- Gao, G.; Wang, L.; Shi, H.; Liu, D.; Fan, B.; Guan, C. Facile large-area uniform photolithography of membrane diffractive lens based on vacuum assisted self contact method. Sci. Rep. 2020, 10, 9005. [Google Scholar] [CrossRef]
- Dale, J.; Hughes, B.; Lancaster, J.A.; Lewis, J.A.; Reichold, J.A.; Warden, S.M. Multi-channel absolute distance measurement system with sub ppm-accuracy and 20m range using frequency scanning interferometry and gas absorption cells. Opt. Express 2014, 22, 24869–24893. [Google Scholar] [CrossRef]
- Zhu, K.; Guo, B.; Lu, Y.; Zhang, S.; Tan, Y. Single-spot two-dimensional displacement measurement based on self-mixing interferometry. Optica 2017, 4, 729–735. [Google Scholar] [CrossRef]
- Lu, C.; Liu, G.; Liu, B.; Chen, F.; Gan, Y. Absolute distance measurement system with micron-grade measurement uncertainty and 24m range using frequency scanning interferometry with compensation of environmental vibration. Opt. Express 2016, 24, 30215–30224. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.S.; Hsu, H.C.; Lin, Y.X. Design of a six-degree-of-freedom geometric errors measurement system for a rotary axis of a machine tool. Opt. Lasers Eng. 2020, 127, 105949. [Google Scholar] [CrossRef]
- Friedrich, C.; Kauschinger, B.; Ihlenfeldt, S. Spatial force measurement using a rigid hexapod-based end-effector with structure-integrated force sensors in a hexapod machine tool. Measurement 2019, 145, 350–360. [Google Scholar] [CrossRef]
- Gao, G.; Shi, H.; Wang, L.; Liu, D.; Wang, J.; Du, J.; Bian, J.; Fan, B.; Yang, H. Large Aperture High Diffraction Efficiency Off-axis Fresnel Lens Fabrication and Analysis. Opt. Express 2022, 30, 28932–28940. [Google Scholar] [CrossRef]
- Thurner, K.; Quacquarelli, F.P.; Braun, P.P.; Savio, C.D.; Karrai, K. Fiber-based distance sensing interferometry. Appl. Opt. 2015, 54, 3051–3063. [Google Scholar] [CrossRef]
Pose Tolerance of Primary Lens | MTF Influence | Tolerance | Measurement Requirements |
---|---|---|---|
Distance (translation along the z-axis) | 0.5% | ±0.1 mm | 20 μm |
Decentration (translation along the x/y axis) | 1% | ±0.02 mm | 4 μm |
Tilt (rotation around x/y axis) | 0.5% | ±0.02° | 0.004° |
Degree of Freedom | Accuracy |
---|---|
Rx,y | 0.03″ |
Rz | 0.07″ |
x,y | 0.35 μm |
z | 0.15 μm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, H.; Du, J.; Wang, L.; Bian, J.; Gao, G.; Liu, D.; Fan, B.; Yang, H. A High-Precision Real-Time Pose Measurement Method for the Primary Lens of Large Aperture Space Telescope Based on Laser Ranging. Sensors 2023, 23, 4833. https://doi.org/10.3390/s23104833
Shi H, Du J, Wang L, Bian J, Gao G, Liu D, Fan B, Yang H. A High-Precision Real-Time Pose Measurement Method for the Primary Lens of Large Aperture Space Telescope Based on Laser Ranging. Sensors. 2023; 23(10):4833. https://doi.org/10.3390/s23104833
Chicago/Turabian StyleShi, Heng, Junfeng Du, Lihua Wang, Jiang Bian, Guohan Gao, Dun Liu, Bin Fan, and Hu Yang. 2023. "A High-Precision Real-Time Pose Measurement Method for the Primary Lens of Large Aperture Space Telescope Based on Laser Ranging" Sensors 23, no. 10: 4833. https://doi.org/10.3390/s23104833
APA StyleShi, H., Du, J., Wang, L., Bian, J., Gao, G., Liu, D., Fan, B., & Yang, H. (2023). A High-Precision Real-Time Pose Measurement Method for the Primary Lens of Large Aperture Space Telescope Based on Laser Ranging. Sensors, 23(10), 4833. https://doi.org/10.3390/s23104833