Precision Denavit–Hartenberg Parameter Calibration for Industrial Robots Using a Laser Tracker System and Intelligent Optimization Approaches
Abstract
:1. Introduction
2. Methodology
2.1. Data Preprocessing
2.2. FK Model of UR5
2.3. Formulating the Estimation Problem as a Cost Function
2.4. Metaheuristic Optimization Algorithms
2.4.1. Differential Evolution
2.4.2. Particle Swarm Optimization
2.4.3. Artificial Bee Colony
- 1.
- initialize the population as
- 2.
- calculate the fitness associated with each member of the population
- 3.
- repeat the following loop:
- a.
- produce a new set of industrial robot DH parameters as the solutions for the optimization problem using the employed bee using where is a uniform random number
- b.
- calculate the fitness function associated with each solution
- c.
- for each solution, calculate its selection probability value as follows:
- d.
- produce the new solutions for the onlookers from the solutions selected depending on and evaluate them
- e.
- apply a greedy selection process for onlookers
- f.
- find possible abandoned food sources for scouts and replace them with a new food source using , where is a uniform and random number
- g.
- compare the best solution in this iteration with the overall best solution and replace it, if necessary
- h.
- if the maximum number of iterations () is achieved, stop; otherwise, continue the loop
2.4.4. Gravitational Search Algorithm
3. Hardware Setup for the Experiment
3.1. Industrial Robot: UR5
3.2. Laser Tracker System
4. Experimental Results
4.1. Data Gathering
4.2. Performance Measurement
4.3. Results
5. Conclusions
6. Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Z.; Li, S.; Luo, X. An overview of calibration technology of industrial robots. IEEE/CAA J. Autom. Sin. 2021, 8, 23–36. [Google Scholar] [CrossRef]
- Szybicki, D.; Obal, P.; Kurc, K.; Gierlak, P. Programming of Industrial Robots Using a Laser Tracker. Sensors 2022, 22, 6464. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-L.; Song, H.-C.; Song, J.-B. Hole detection algorithm for chamferless square peg-in-hole based on shape recognition using F/T sensor. Int. J. Precis. Eng. Manuf. 2014, 15, 425–432. [Google Scholar] [CrossRef]
- Luo, R.C.; Chang, A.; Li, C. A novel peg-in-hole approach based on geometrical analysis for inclined uncertainty. In Proceedings of the 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Munich, Germany, 3–7 July 2017; IEEE: Piscataway, NJ, USA; pp. 891–896. [Google Scholar]
- Zhang, X.; Zheng, Y.; Ota, J.; Huang, Y. Peg-in-hole assembly based on two-phase scheme and f/t sensor for dual-arm robot. Sensors 2017, 17, 2004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.; Park, J.; Lee, D.-H.; Park, J.-H.; Baeg, M.-H.; Bae, J.-H. Compliance-based robotic peg-in-hole assembly strategy without force feedback. IEEE Trans. Ind. Electron. 2017, 64, 6299–6309. [Google Scholar] [CrossRef]
- Li, R.; Qiao, H. Condition and strategy analysis for assembly based on attractive region in environment. IEEE/ASME Trans. Mechatron. 2017, 22, 2218–2228. [Google Scholar] [CrossRef]
- Farhadi, A.; Lee, S.K.; Hinchy, E.P.; O’Dowd, N.P.; McCarthy, C.T. The Development of a Digital Twin Framework for an Industrial Robotic Drilling Process. Sensors 2022, 22, 7232. [Google Scholar] [CrossRef] [PubMed]
- Khanesar, M.A.; Branson, D. Robust Sliding Mode Fuzzy Control of Industrial Robots Using an Extended Kalman Filter Inverse Kinematic Solver. Energies 2022, 15, 1876. [Google Scholar] [CrossRef]
- Olabi, A.; Damak, M.; Bearee, R.; Gibaru, O.; Leleu, S. Improving the accuracy of industrial robots by offline compensation of joints errors. In Proceedings of the 2012 IEEE International Conference on Industrial Technology, Athens, Greece, 19–21 March 2012; IEEE: Piscataway, NJ, USA; pp. 492–497. [Google Scholar]
- Li, R.; Qiao, H. A survey of methods and strategies for high-precision robotic grasping and assembly tasks—Some new trends. IEEE/ASME Trans. Mechatron. 2019, 24, 2718–2732. [Google Scholar] [CrossRef]
- Chen, H.; Fuhlbrigge, T.; Choi, S.; Wang, J.; Li, X. Practical industrial robot zero offset calibration. In Proceedings of the 2008 IEEE International Conference on Automation Science and Engineering, Arlington, VA, USA, 23–26 August 2008; IEEE: Piscataway, NJ, USA; pp. 516–521. [Google Scholar]
- Joubair, A.; Bonev, I.A. Kinematic calibration of a six-axis serial robot using distance and sphere constraints. Int. J. Adv. Manuf. Technol. 2015, 77, 515–523. [Google Scholar] [CrossRef]
- Kana, S.; Gurnani, J.; Ramanathan, V.; Turlapati, S.H.; Ariffin, M.Z.; Campolo, D. Fast kinematic re-calibration for industrial robot arms. Sensors 2022, 22, 2295. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.-N.; Zhou, J.; Kang, H.-J. A calibration method for enhancing robot accuracy through integration of an extended Kalman filter algorithm and an artificial neural network. Neurocomputing 2015, 151, 996–1005. [Google Scholar] [CrossRef]
- Gao, G.; Li, Y.; Liu, F.; Han, S. Kinematic calibration of industrial robots based on distance information using a hybrid identification method. Complexity 2021, 2021, 8874226. [Google Scholar] [CrossRef]
- Roth, Z.; Mooring, B.; Ravani, B. An overview of robot calibration. IEEE J. Robot. Autom. 1987, 3, 377–385. [Google Scholar] [CrossRef]
- Judd, R.; Knasinski, A. A technique to calibrate industrial robots with experimental verification. In Proceedings of the 1987 IEEE International Conference on Robotics and Automation, Raleigh, NC, USA, 31 March–3 April 1987; IEEE: Piscataway, NJ, USA; Volume 4, pp. 351–357. [Google Scholar]
- Xuan, J.-Q.; Xu, S.-H. Review on kinematics calibration technology of serial robots. Int. J. Precis. Eng. Manuf. 2014, 15, 1759–1774. [Google Scholar]
- Aoyagi, S.; Kohama, A.; Nakata, Y.; Hayano, Y.; Suzuki, M. Improvement of robot accuracy by calibrating kinematic model using a laser tracking system-compensation of non-geometric errors using neural networks and selection of optimal measuring points using genetic algorithm. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; IEEE: Piscataway, NJ, USA; pp. 5660–5665. [Google Scholar]
- Bai, M.; Zhang, M.; Zhang, H.; Li, M.; Zhao, J.; Chen, Z. Calibration Method Based on Models and Least-Squares Support Vector Regression Enhancing Robot Position Accuracy. IEEE Access 2021, 9, 136060–136070. [Google Scholar] [CrossRef]
- Duong, Q.K.; Trang, T.T.; Pham, T.L. Robot Control Using Alternative Trajectories Based on Inverse Errors in the Workspace. J. Robot. 2021, 2021, 9995787. [Google Scholar] [CrossRef]
- Hu, J.; Hua, F.; Tian, W. Robot positioning error compensation method based on deep neural network. J. Phys. Conf. Ser. 2020, 1487, 012045. [Google Scholar] [CrossRef]
- Kato, D.; Yoshitugu, K.; Maeda, N.; Hirogaki, T.; Aoyama, E.; Takahashi, K. Finding Features of Positioning Error for Large Industrial Robots Based on Convolutional Neural Network. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Online, 17–19 August 2021; American Society of Mechanical Engineers: New York, NY, USA; Volume 85376, p. V002T02A022. [Google Scholar]
- Biswas, A.; Mishra, K.; Tiwari, S.; Misra, A. Physics-inspired optimization algorithms: A survey. J. Optim. 2013, 2013, 438152. [Google Scholar] [CrossRef]
- Gen, M.; Cheng, R. Genetic Algorithms and Engineering Optimization; John Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- Eberhart, R.C.; Shi, Y.; Kennedy, J. Swarm Intelligence; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Yang, X.-S.; Deb, S.; Zhao, Y.-X.; Fong, S.; He, X. Swarm intelligence: Past, present and future. Soft Comput. 2018, 22, 5923–5933. [Google Scholar] [CrossRef] [Green Version]
- Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 2009, 179, 2232–2248. [Google Scholar] [CrossRef]
- Kaveh, A.; Talatahari, S. A novel heuristic optimization method: Charged system search. Acta Mech. 2010, 213, 267–289. [Google Scholar] [CrossRef]
- Sun, J.; Xu, W.; Feng, B. A global search strategy of quantum-behaved particle swarm optimization. In Proceedings of the IEEE Conference on Cybernetics and Intelligent Systems, Singapore, 1–3 December 2004; IEEE: Piscataway, NJ, USA; Volume 1, pp. 111–116. [Google Scholar]
- Mallipeddi, R.; Suganthan, P.N. Differential evolution algorithm with ensemble of parameters and mutation and crossover strategies. In Proceedings of the International Conference on Swarm, Evolutionary, and Memetic Computing, Chennai, India, 16–18 December 2010; Springer: Berlin/Heidelberg, Germany; pp. 71–78. [Google Scholar]
- Karaboga, D.; Basturk, B. On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 2008, 8, 687–697. [Google Scholar] [CrossRef]
- Karaboga, D.; Gorkemli, B.; Ozturk, C.; Karaboga, N. A comprehensive survey: Artificial bee colony (ABC) algorithm and applications. Artif. Intell. Rev. 2014, 42, 21–57. [Google Scholar] [CrossRef]
- Kufieta, K. Force Estimation in Robotic Manipulators: Modeling, Simulation and Experiments. Master’s Thesis, Department of Engineering Cybernetics NTNU Norwegian University of Science and Technology, Trondheim, Norway, 2014. [Google Scholar]
- Sun, J.-D.; Cao, G.-Z.; Li, W.-B.; Liang, Y.-X.; Huang, S.-D. Analytical inverse kinematic solution using the DH method for a 6-DOF robot. In Proceedings of the 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Jeju, Republic of Korea, 28 June–1 July 2017; IEEE: Piscataway, NJ, USA; pp. 714–716. [Google Scholar]
- Khanesar, M.A.; Yan, M.; Syam, W.P.; Piano, S.; Leach, R.K.; Branson, D.T. A Neural Network Separation Approach for the Inclusion of Static Friction in Nonlinear Static Models of Industrial Robots. IEEE/ASME Trans. Mechatron. 2023, 1–11. [Google Scholar] [CrossRef]
- Fotiou, A.; Kaltsikis, C. Computationally efficient methods and solutions with least squares similarity transformation models. Retrieved Jan. 2016, 2, 2018. [Google Scholar]
- Dong, W.Y.; Zhang, R.R. Order-3 stability analysis of particle swarm optimization. Inf. Sci. 2019, 503, 508–520. [Google Scholar] [CrossRef]
- Kadirkamanathan, V.; Selvarajah, K.; Fleming, P.J. Stability analysis of the particle dynamics in particle swarm optimizer. IEEE Trans. Evol. Comput. 2006, 10, 245–255. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, H.; Zhou, A. A particle swarm optimization algorithm for mixed-variable optimization problems. Swarm Evol. Comput. 2021, 60, 100808. [Google Scholar] [CrossRef]
- Kyle, S. Operational features of the Leica laser tracker. In Proceedings of the IEE Seminar Business Improvement through Measurement, Birmingham, UK, 8 June 1999. [Google Scholar]
- Zhu, G.; Cai, M.; Wang, Z.; Li, L.; Zhao, J.; Zhou, B. A new calibration method for a dynamic coordinate system in a robotic blade grinding and polishing system based on the six-point limit principle. Robot. Comput.-Integr. Manuf. 2023, 83, 102561. [Google Scholar] [CrossRef]
- Dehghani, M.; McKenzie, R.A.; Irani, R.A.; Ahmadi, M. Robot-mounted sensing and local calibration for high-accuracy manufacturing. Robot. Comput.-Integr. Manuf. 2023, 79, 102429. [Google Scholar] [CrossRef]
- Botero-Valencia, J.; Marquez-Viloria, D.; Castano-Londono, L.; Morantes-Guzmán, L. A low-cost platform based on a robotic arm for parameters estimation of Inertial Measurement Units. Measurement 2017, 110, 257–262. [Google Scholar] [CrossRef]
- Mourtzis, D. Simulation in the design and operation of manufacturing systems: State of the art and new trends. Int. J. Prod. Res. 2020, 58, 1927–1949. [Google Scholar] [CrossRef]
Link | ||||
---|---|---|---|---|
1 | 0 | |||
2 | 0 | 0 | ||
3 | 0 | 0 | ||
4 | 0 | |||
5 | 0 | |||
6 | 0 | 0 |
Environmental Working Conditions | IP54: The IEC-Certified Sealed Unit Guarantees Ingress Protection against Dust and Other Contaminants |
---|---|
Operating temperature | Wide operating temperature range of −15 to 45 degrees Celsius |
Temperature compensation | MeteoStation: Integrated environmental unit monitors conditions including temperature, pressure, and humidity to compensate for changes. |
ISO certification | ISO 17025 |
Connectivity | Wi-Fi and LAN |
Detector features | Red ring reflector—1.5″ radius: 19.05 mm ± 0.0025 mm, centering of optics: <±0.003 mm, ball roundness: ≤0.003 mm, acceptance angle: ±30°, weight: 170 gr |
Data output rate | Measurement rate of up to 1000 points per s |
Distance accuracy | 40 m in diameter and a 6DoF measuring volume of up to 20 m |
Laser safety | Laser class 2 |
Distance to robot base origin | 2.8 m |
Algorithm | Parameter | Value |
---|---|---|
DE | 0.55 | |
2 | ||
150 | ||
300 | ||
GSA | 1 | |
20 | ||
2 | ||
300 | ||
150 | ||
ABC | 150 | |
300 |
Performance Indexes | MAE | ||||
---|---|---|---|---|---|
Train | Test | Train | Test | ||
Uncalibrated | X | 125.5 | 117.8 | 95.9 | 90.3 |
Y | 94.3 | 105.1 | 64.0 | 77.5 | |
Z | 64.2 | 73.5 | 50.7 | 58.4 | |
3D | 97.9 | 100.6 | 70.2 | 75.4 | |
Calibrated () Using ABC | X | 74.5 | 80.0 | 62.0 | 64.7 |
Y | 75.3 | 73.9 | 53.2 | 56.7 | |
Z | 64.2 | 74.2 | 50.4 | 58.9 | |
3D | 71.5 | 76.1 | 55.2 | 60.1 | |
Using GSA | X | 79.9 | 86.0 | 65.8 | 71.1 |
Y | 70.9 | 66.8 | 51.3 | 52.6 | |
Z | 64.1 | 74.2 | 50.7 | 59.0 | |
3D | 71.9 | 76.1 | 56.0 | 60.9 | |
Using PSO | X | 72.3 | 80.0 | 59.5 | 64.5 |
Y | 72.8 | 76.8 | 50.8 | 60.2 | |
Z | 63.4 | 74.6 | 50.1 | 59.9 | |
3D | 69.6 | 77.2 | 53.5 | 61.5 | |
Using DE | X | 72.3 | 80.0 | 59.5 | 64.5 |
Y | 72.7 | 76.7 | 50.8 | 60.2 | |
Z | 63.4 | 74.6 | 50.1 | 59.9 | |
3D | 69.6 | 77.2 | 53.5 | 61.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khanesar, M.A.; Yan, M.; Isa, M.; Piano, S.; Branson, D.T. Precision Denavit–Hartenberg Parameter Calibration for Industrial Robots Using a Laser Tracker System and Intelligent Optimization Approaches. Sensors 2023, 23, 5368. https://doi.org/10.3390/s23125368
Khanesar MA, Yan M, Isa M, Piano S, Branson DT. Precision Denavit–Hartenberg Parameter Calibration for Industrial Robots Using a Laser Tracker System and Intelligent Optimization Approaches. Sensors. 2023; 23(12):5368. https://doi.org/10.3390/s23125368
Chicago/Turabian StyleKhanesar, Mojtaba A., Minrui Yan, Mohammed Isa, Samanta Piano, and David T. Branson. 2023. "Precision Denavit–Hartenberg Parameter Calibration for Industrial Robots Using a Laser Tracker System and Intelligent Optimization Approaches" Sensors 23, no. 12: 5368. https://doi.org/10.3390/s23125368
APA StyleKhanesar, M. A., Yan, M., Isa, M., Piano, S., & Branson, D. T. (2023). Precision Denavit–Hartenberg Parameter Calibration for Industrial Robots Using a Laser Tracker System and Intelligent Optimization Approaches. Sensors, 23(12), 5368. https://doi.org/10.3390/s23125368