A Deep Learning-Based Algorithm for Identifying Precipitation Clouds Using Fengyun-4A Satellite Observation Data
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. FY-4A Data
2.3. GPM IMERG Precipitation Product Data
3. Materials and Methods
3.1. Overview of Architecture
3.2. Spatial Pyramid Module
3.3. Attention Mechanism Module
3.4. Loss Function
3.5. Baseline Models
4. Experiment Setup
4.1. Data Preprocessing
4.2. Hyperparameter Setting
4.3. Evaluation Metrics
5. Results and Discussions
5.1. Comparison of Image Segmentation Performance
5.2. Comparison of Daytime Precipitation Cloud Identification
5.3. Comparison of Nighttime Precipitation Cloud Identification
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nguyen, P.; Sellars, S.; Thorstensen, A.; Tao, Y.; Ashouri, H.; Braithwaite, D.; Hsu, K.; Sorooshian, S. Satellites Track Precipitation of Super Typhoon Haiyan. Eos Trans. Am. Geophys. Union 2014, 95, 133–135. [Google Scholar] [CrossRef]
- Mehran, A.; AghaKouchak, A. Capabilities of satellite precipitation datasets to estimate heavy precipitation rates at different temporal accumulations. Hydrol. Process. 2014, 28, 2262–2270. [Google Scholar] [CrossRef]
- Adler, R.F.; Negri, A.J. A Satellite Infrared Technique to Estimate Tropical Convective and Stratiform Rainfall. J. Appl. Meteorol. Climatol. 1988, 27, 30–51. [Google Scholar] [CrossRef]
- Arkin, P.A.; Meisner, B.N. The Relationship between Large-Scale Convective Rainfall and Cold Cloud over the Western Hemisphere during 1982-84. Mon. Weather Rev. 1987, 115, 51–74. [Google Scholar] [CrossRef]
- So, D.; Shin, D. Classification of precipitating clouds using satellite infrared observations and its implications for rainfall estimation. Q. J. R. Meteorol. Soc. 2018, 144, 133–144. [Google Scholar] [CrossRef] [Green Version]
- Xue, M.; Hang, R.; Liu, Q.; Yuan, X.-T.; Lu, X. CNN-based near-real-time precipitation estimation from Fengyun-2 satellite over Xinjiang, China. Atmos. Res. 2021, 250, 105337. [Google Scholar] [CrossRef]
- Gorooh, V.A.; Kalia, S.; Nguyen, P.; Hsu, K.-L.; Sorooshian, S.; Ganguly, S.; Nemani, R.R. Deep Neural Network Cloud-Type Classification (DeepCTC) Model and Its Application in Evaluating PERSIANN-CCS. Remote Sens. 2020, 12, 316. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhang, A.; Zhang, Y.; Cui, C.; Wan, R.; Wang, B.; Fu, Y. A Heavy Precipitation Event in the Yangtze River Basin Led by an Eastward Moving Tibetan Plateau Cloud System in the Summer of 2016. J. Geophys. Res. Atmos. 2020, 125, e2020JD032429. [Google Scholar] [CrossRef]
- Liu, Q.; Li, Y.; Yu, M.; Chiu, L.S.; Hao, X.; Duffy, D.Q.; Yang, C. Daytime Rainy Cloud Detection and Convective Precipitation Delineation Based on a Deep Neural Network Method Using GOES-16 ABI Images. Remote Sens. 2019, 11, 2555. [Google Scholar] [CrossRef] [Green Version]
- Reudenbach, C.; Heinemann, G.; Heuel, E.; Bendix, J.; Winiger, M. Investigation of summertime convective rainfall in Western Europe based on a synergy of remote sensing data and numerical models. Meteorol. Atmos. Phys. 2001, 76, 23–41. [Google Scholar]
- Schmetz, J.; Tjembs, S.A.; Gube, M.; van de Berg, L. Monitoring deep convection and convective overshooting with METEOSAT. Adv. Space Res. 1997, 19, 433–441. [Google Scholar]
- Kühnlein, M.; Thies, B.; Nauß, T.; Bendix, J. Rainfall-Rate Assignment Using MSG SEVIRI Data—A Promising Approach to Spaceborne Rainfall-Rate Retrieval for Midlatitudes. J. Appl. Meteorol. Climatol. 2010, 49, 1477–1495. [Google Scholar] [CrossRef]
- Thies, B.; Nauß, T.; Bendix, J. Precipitation process and rainfall intensity differentiation using Meteosat Second Generation Spinning Enhanced Visible and Infrared Imager data. J. Geophys. Res. 2008, 113, D23206. [Google Scholar] [CrossRef]
- Ackerman, S.A.; Strabala, K.I.; Menzel, W.P.; Frey, R.A.; Moeller, C.C.; Gumley, L.E. Discriminating clear sky from clouds with MODIS. J. Geophys. Res. Atmos. 1998, 103, 32141–32157. [Google Scholar]
- Strabala, K.I.; Ackerman, S.A.; Menzel, W.P. Cloud Properties inferred from 8–12-µm Data. J. Appl. Meteorol. Climatol. 1994, 33, 212–229. [Google Scholar] [CrossRef]
- Behrangi, A.; Hsu, K.; Imam, B.; Sorooshian, S.; Huffman, G.J.; Kuligowski, R.J. PERSIANN-MSA: A Precipitation Estimation Method from Satellite-Based Multispectral Analysisl. J. Hydrometeorol. 2009, 10, 1414–1429. [Google Scholar] [CrossRef]
- Mishra, A.K. A New Technique to Estimate Precipitation at Fine Scale Using Multifrequency Satellite Observations Over Indian Land and Oceanic Regions. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4349–4358. [Google Scholar] [CrossRef]
- Tjemkes, S.A.; Berg, L.; Schmetz, J. Warm water vapour pixels over high clouds as observed by METEOSAT. Contrib. Atmos. Phys. 1997, 70, 15–21. [Google Scholar]
- Lensky, I.M.; Rosenfeld, D. A Night-Rain Delineation Algorithm for Infrared Satellite Data Based on Microphysical Considerations. J. Appl. Meteorol. 2003, 42, 1218–1226. [Google Scholar] [CrossRef]
- Nauss, T.; Kokhanovsky, A.A. Assignment of rainfall confidence values using multispectral satellite data at mid-latitudes: First results. Adv. Geosci. 2007, 10, 99–102. [Google Scholar] [CrossRef] [Green Version]
- Nauss, T.; Kokhanovsky, A.A. Discriminating raining from non-raining clouds at mid-latitudes using multispectral satellite data. Atmos. Chem. Phys. 2006, 6, 5031–5036. [Google Scholar] [CrossRef] [Green Version]
- Scofield, R.A. The NESDIS Operational Convective Precipitation-Estimation Technique. Mon. Weather Rev. 1987, 115, 1773–1793. [Google Scholar] [CrossRef]
- Hall, T.J.; Haar, T.H.V. The Diurnal Cycle of West Pacific Deep Convection and Its Relation to the Spatial and Temporal Variation of Tropical MCSs. J. Atmos. Sci. 1999, 56, 3401–3415. [Google Scholar] [CrossRef]
- Fu, R.; Genio, A.D.D.; Rossow, W.B. Behavior of Deep Convective Clouds in the Tropical Pacific Deduced from ISCCP Radiances. J. Clim. 1990, 3, 1129–1152. [Google Scholar] [CrossRef]
- Vila, D.A.; Machado, L.A.T.; Laurent, H.; Velasco, I. Forecast and Tracking the Evolution of Cloud Clusters (ForTraCC) Using Satellite Infrared Imagery: Methodology and Validation. Weather Forecast. 2008, 23, 233–245. [Google Scholar] [CrossRef]
- Liu, X.; Liu; Fu, Y. Daytime Precipitating Clouds Identification Scheme Relying on Optical Thickness and Effective Radius. Chin. J. Atmos. Sci. 2011, 35, 903–911. [Google Scholar]
- Yang, C.; Yu, M.; Li, Y.; Hu, F.; Jiang, Y.; Liu, Q.; Sha, D.; Xu, M.; Gu, J. Big Earth data analytics: A survey. Big Earth Data 2019, 3, 83–107. [Google Scholar] [CrossRef] [Green Version]
- Mecikalski, J.R.; Bedka, K.M. Forecasting Convective Initiation by Monitoring the Evolution of Moving Cumulus in Daytime GOES Imagery. Mon. Weather Rev. 2006, 134, 49–78. [Google Scholar] [CrossRef] [Green Version]
- Fan, R.; Zhao, W.; Li, X.; Chen, Y.; Yang, Y. Relationship Between Cloud-Top Spectral information and Precipitation Intensity of Meiyu Precipitation over the Yangtze-Huaihe Valley. Acta Opt. Sin. 2021, 41, 2201001. [Google Scholar]
- Hayatbini, N.; Hsu, K.; Sorooshian, S.; Zhang, Y.; Zhang, F. Effective Cloud Detection and Segmentation Using a Gradient-Based Algorithm for Satellite Imagery: Application to Improve PERSIANN-CCS. J. Hydrometeorol. 2019, 20, 901–913. [Google Scholar] [CrossRef] [Green Version]
- Kühnlein, M.; Appelhans, T.; Thies, B.; Nauss, T. Improving the accuracy of rainfall rates from optical satellite sensors with machine learning—A random forests-based approach applied to MSG SEVIRI. Remote Sens. Environ. 2014, 141, 129–143. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Yang, X.; Li, Z. Detection of severe convective cloud over sea surface from geostationary meteorological satellite images based on deep learning. J. Remote Sens. 2020, 24, 97–106. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, T.; Chen, G.; Tan, X.; Zhu, K. Convective Clouds Extraction From Himawari–8 Satellite Images Based on Double-Stream Fully Convolutional Networks. IEEE Geosci. Remote Sens. Lett. 2020, 17, 553–557. [Google Scholar]
- Sadeghi, M.; Asanjan, A.A.; Faridzad, M.; Nguyen, P.; Hsu, K.; Sorooshian, S.; Braithwaite, D. PERSIANN-CNN: Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Convolutional Neural Networks. J. Hydrometeorol. 2019, 20, 2273–2289. [Google Scholar] [CrossRef]
- Wang, C.; Xu, J.; Tang, G.; Yang, Y.; Hong, Y. Infrared Precipitation Estimation Using Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8612–8625. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar]
- Wang, W.; Lin, H.; Chen, N.; Chen, Z. Evaluation of multi-source precipitation products over the Yangtze River Basin. Atmos. Res. 2021, 249, 105287. [Google Scholar] [CrossRef]
- Sun, F.; Li, B.; Min, M.; Qin, D. Deep Learning-Based Radar Composite Reflectivity Factor Estimations from Fengyun-4A Geostationary Satellite Observations. Remote Sens. 2021, 13, 2229. [Google Scholar] [CrossRef]
- Gao, Y.; Guan, J.; Zhang, F.; Wang, X.; Long, Z. Attention-Unet-Based Near-Real-Time Precipitation Estimation from Fengyun-4A Satellite Imageries. Remote Sens. 2022, 14, 2925. [Google Scholar] [CrossRef]
- Yang, X.; Sun, P.; Zhang, F.; Du, Z.; Liu, R. Multi-Task Collaboration Deep Learning Framework for Infrared Precipitation Estimation. Remote Sens. 2021, 13, 2310. [Google Scholar]
- Tan, M.L.; Santo, H. Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia. Atmos. Res. 2018, 202, 63–76. [Google Scholar] [CrossRef]
- Zhou, C.; Gao, W.; Hu, J.; Du, L.; Du, L. Capability of IMERG V6 Early, Late, and Final Precipitation Products for Monitoring Extreme Precipitation Events. Remote Sens. 2021, 13, 689. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al. Attention U-Net: Learning Where to Look for the Pancreas. arXiv 2018, arXiv:1804.03999. Available online: http://arxiv.org/abs/1804.03999 (accessed on 10 October 2022).
- Shore, J.; Johnson, R. Properties of cross-entropy minimization. IEEE Trans. Inf. Theory 1981, 27, 472–482. [Google Scholar] [CrossRef] [Green Version]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Hsu, K.; Ihler, A.; Gao, X.; Sorooshian, S. A Two-Stage Deep Neural Network Framework for Precipitation Estimation from Bispectral Satellite Information. J. Hydrometeorol. 2018, 19, 393–408. [Google Scholar] [CrossRef]
- Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747. Available online: http://arxiv.org/abs/1609.04747 (accessed on 10 October 2022).
Types | Daytime | Nighttime | Nychthemeron |
---|---|---|---|
CTH | IR13.5 | IR13.5 | IR13.5 |
ΔT6.25–10.7 | ΔT6.25–10.7 | ΔT6.25–10.7 | |
CTT | IR10.7 | IR10.7 | IR10.7 |
CP | ΔT10.7–13.5 | ΔT10.7–13.5 | ΔT10.7–13.5 |
WV | WV6.25 | WV6.25 | WV6.25 |
CWP | VIS0.6 | ||
VIS0.8 | |||
NIR1.6 |
Model | M | A | P | R | F | ER | |
---|---|---|---|---|---|---|---|
Daytime | PCINet | 0.748 | 0.919 | 0.865 | 0.830 | 0.843 | 0.081 |
Unet | 0.711 | 0.904 | 0.846 | 0.798 | 0.813 | 0.096 | |
PSPNet | 0.666 | 0.886 | 0.816 | 0.759 | 0.774 | 0.114 | |
DeeplabV3+ | 0.674 | 0.888 | 0.817 | 0.772 | 0.785 | 0.112 | |
SegNet | 0.684 | 0.893 | 0.826 | 0.775 | 0.792 | 0.107 | |
FCN-8s | 0.691 | 0.896 | 0.831 | 0.782 | 0.797 | 0.104 | |
Nighttime | PCINet | 0.726 | 0.915 | 0.849 | 0.810 | 0.825 | 0.085 |
Unet | 0.674 | 0.899 | 0.826 | 0.759 | 0.779 | 0.101 | |
PSPNet | 0.637 | 0.885 | 0.796 | 0.728 | 0.744 | 0.115 | |
DeeplabV3+ | 0.596 | 0.874 | 0.779 | 0.681 | 0.705 | 0.126 | |
SegNet | 0.648 | 0.887 | 0.786 | 0.741 | 0.757 | 0.113 | |
FCN-8s | 0.655 | 0.891 | 0.807 | 0.745 | 0.763 | 0.109 | |
Nychthemeron | PCINet | 0.742 | 0.916 | 0.859 | 0.825 | 0.838 | 0.084 |
Unet | 0.687 | 0.896 | 0.821 | 0.783 | 0.794 | 0.104 | |
PSPNet | 0.639 | 0.880 | 0.798 | 0.734 | 0.749 | 0.120 | |
DeeplabV3+ | 0.597 | 0.870 | 0.792 | 0.681 | 0.708 | 0.130 | |
SegNet | 0.659 | 0.887 | 0.805 | 0.755 | 0.769 | 0.113 | |
FCN-8s | 0.667 | 0.889 | 0.811 | 0.762 | 0.776 | 0.111 |
Model | POD | FAR | CSI | |
---|---|---|---|---|
Daytime | PCINet | 0.651 | 0.246 | 0.554 |
Unet | 0.637 | 0.231 | 0.531 | |
PSPNet | 0.564 | 0.277 | 0.459 | |
DeeplabV3+ | 0.594 | 0.279 | 0.476 | |
SegNet | 0.597 | 0.264 | 0.489 | |
FCN-8s | 0.608 | 0.256 | 0.499 |
Model | POD | FAR | CSI | |
---|---|---|---|---|
Nighttime | PCINet | 0.583 | 0.283 | 0.481 |
Unet | 0.558 | 0.269 | 0.459 | |
PSPNet | 0.500 | 0.318 | 0.399 | |
DeeplabV3+ | 0.402 | 0.338 | 0.328 | |
SegNet | 0.533 | 0.325 | 0.421 | |
FCN-8s | 0.537 | 0.303 | 0.431 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, G.; Huang, J.; Zhang, Y.; Zhu, L.; Lim Kam Sian, K.T.C.; Feng, Y.; Yu, T. A Deep Learning-Based Algorithm for Identifying Precipitation Clouds Using Fengyun-4A Satellite Observation Data. Sensors 2023, 23, 6832. https://doi.org/10.3390/s23156832
Ma G, Huang J, Zhang Y, Zhu L, Lim Kam Sian KTC, Feng Y, Yu T. A Deep Learning-Based Algorithm for Identifying Precipitation Clouds Using Fengyun-4A Satellite Observation Data. Sensors. 2023; 23(15):6832. https://doi.org/10.3390/s23156832
Chicago/Turabian StyleMa, Guangyi, Jie Huang, Yonghong Zhang, Linglong Zhu, Kenny Thiam Choy Lim Kam Sian, Yixin Feng, and Tianming Yu. 2023. "A Deep Learning-Based Algorithm for Identifying Precipitation Clouds Using Fengyun-4A Satellite Observation Data" Sensors 23, no. 15: 6832. https://doi.org/10.3390/s23156832
APA StyleMa, G., Huang, J., Zhang, Y., Zhu, L., Lim Kam Sian, K. T. C., Feng, Y., & Yu, T. (2023). A Deep Learning-Based Algorithm for Identifying Precipitation Clouds Using Fengyun-4A Satellite Observation Data. Sensors, 23(15), 6832. https://doi.org/10.3390/s23156832