A Holistic Review of Cyber–Physical–Social Systems: New Directions and Opportunities
Abstract
:1. Introduction
- We determine a CPS and its interaction with social media and its components, and to what level it influences human behaviors.
- We examine the distribution and intersection of research associated with CPSS, complex systems, social media, influence and cyber security applications.
- We discuss the recent advancements of CPSSs and how they enhance human activities and system performances.
- We describe the recent challenges and lessons learned and future research directions of CPSSs.
2. Cyber Physical Social System (CPSS)
2.1. Cyber–Physical System
2.2. Social Media Complexity
3. Current State of the Art
3.1. Distribution of Current Research
3.2. Statistical Visualization of Current Research
3.3. Network Analysis of Current Research
3.4. Conceptual Analysis of Most Influential Research
3.5. Analysis of Current Research
4. Recent Technologies with CPSS
5. Most Influential Research Focuses
6. Role of CPSS with Recent Smart Applications
6.1. Data Processing and Resource Allocation
6.2. Cyber Security Implications
7. Research Challenges and Lessons Learned
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
TLA | Three letter acronym |
LD | Linear dichroism |
IoT | Internet of Things |
CPS | Cyber–Physical System |
CPSS | Cyber–Physical–Social System |
C2 | Command and Control |
CPHS | Cyber–Physical–Human System |
HOBI-Lanczos | High-Order Bi-Lanczos |
IES | Intelligent Edge Services |
HAR | Human Activity Recognition |
Non-IID | Nonindependent and Identically Distributed |
ICPS | Industrial Cyber–Physical Systems |
ACP | Artificial Societies, Computational Experiments, and Parallel Execution |
References
- Wolf, W. Cyber-physical systems. Computer 2009, 42, 88–89. [Google Scholar] [CrossRef]
- Chen, H. Applications of cyber-physical system: A literature review. J. Ind. Integr. Manag. 2017, 2, 1750012. [Google Scholar] [CrossRef]
- Ranjith, J. Security Challenges Prospective Measures in the Current Status of Internet of Things (IoT). In Proceedings of the 2022 International Conference on Connected Systems & Intelligence (CSI), Trivandrum, India, 31 August–12 September 2022; pp. 1–8. [Google Scholar]
- Yaacoub, J.P.A.; Salman, O.; Noura, H.N.; Kaaniche, N.; Chehab, A.; Malli, M. Cyber-physical systems security: Limitations, issues and future trends. Microprocess. Microsyst. 2020, 77, 103201. [Google Scholar] [CrossRef] [PubMed]
- Baheti, R.; Gill, H. Cyber-physical systems. Impact Control. Technol. 2011, 12, 161–166. [Google Scholar]
- Yilma, B.A.; Panetto, H.; Naudet, Y. Systemic formalisation of Cyber-Physical-Social System (CPSS): A systematic literature review. Comput. Ind. 2021, 129, 103458. [Google Scholar] [CrossRef]
- Mahmoud, R.; Yousuf, T.; Aloul, F.; Zualkernan, I. Internet of things (IoT) security: Current status, challenges and prospective measures. In Proceedings of the 2015 10th International Conference for Internet Technology and Secured Transactions (ICITST), Bristol, UK, 14–16 December 2015; pp. 336–341. [Google Scholar]
- Smirnov, A.; Levashova, T.; Shilov, N.; Sandkuhl, K. Ontology for cyber-physical-social systems self-organisation. In Proceedings of the 16th Conference of Open Innovations Association FRUCT, Oulu, Finland, 27–31 October 2014; pp. 101–107. [Google Scholar]
- Sowe, S.K.; Zettsu, K.; Simmon, E.; de Vaulx, F.; Bojanova, I. Cyber-Physical Human Systems: Putting People in the Loop. IT Prof. 2016, 18, 10–13. [Google Scholar] [CrossRef]
- Wang, F.Y. The Emergence of Intelligent Enterprises: From CPS to CPSS. IEEE Intell. Syst. 2010, 25, 85–88. [Google Scholar] [CrossRef]
- Popper, K. Three worlds by Karl Popper. In The Tanner Lecture on Human Values; delivered at the University of Michigan on April 7, 1978; pp. 143–167. Available online: https://tannerlectures.utah.edu/_resources/documents/a-to-z/p/popper80.pdf (accessed on 29 July 2023).
- Dahmann, J.S. Systems of Systems Characterization and Types. In Systems of Systems Engineering for NATO Defence Applications; North Atlantic Treaty Organization Science and Technology Organization. 2015; pp. 1–14. Available online: https://www.sto.nato.int/publications/STO%20Educational%20Notes/STO-EN-SCI-276 (accessed on 29 July 2023).
- Barachini, F.; Stary, C. System-of-Systems Thinking. In From Digital Twins to Digital Selves and beyond: Engineering and Social Models for a Trans-Humanist World; Springer Nature: Cham, Switzerland, 2022; pp. 77–79. [Google Scholar]
- Cernian, A.; Vasile, N.; Sacala, I.S. Fostering Cyber-Physical Social Systems through an Ontological Approach to Personality Classification Based on Social Media Posts. Sensors 2021, 21, 6611. [Google Scholar] [CrossRef]
- Zhou, X.; Li, S.; Li, Z.; Li, W. Information diffusion across cyber-physical-social systems in smart city: A survey. Neurocomputing 2021, 444, 203–213. [Google Scholar] [CrossRef]
- Anwar, N.; Xiong, G.; Lu, W.; Ye, P.; Zhao, H.; Wei, Q. Cyber-physical -social systems for smart cities: An overview. In Proceedings of the 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence, DTPI, Beijing, China, 15 July–15 August 2021; pp. 348–353. [Google Scholar] [CrossRef]
- Magutshwa, S.; Radianti, J. Is this Digital Resilience? In Insights from Adaptation and Exaptation of a Cyber-Physical-Social System. In Proceedings of the HICSS, Maui, HI, USA, 4–7 January 2022; pp. 1–10. [Google Scholar]
- Puliafito, A.; Tricomi, G.; Zafeiropoulos, A.; Papavassiliou, S. Smart cities of the future as cyber physical systems: Challenges and enabling technologies. Sensors 2021, 21, 3349. [Google Scholar] [CrossRef]
- Wang, F.Y.; Bennett, G.; Nazanin, B.G.; Li, Y.; Zhang, J.J.; Durgin, G.; Mirabbasi, S.; Lau, P.Y.; Valenta, C.; Amato, F.; et al. IEEE Council on Radio-Frequency Identification: History, Present, and Future Vision. IEEE J. Radio Freq. Identif. 2020, 4, 170–175. [Google Scholar] [CrossRef]
- Reine, R.; Juwono, F.H.; Sim, Z.A.; Wong, W. Cyber-physical-social systems: An overview. In Smart Connected World: Technologies and Applications Shaping the Future; Springer: Berlin/Heidelberg, Germany, 2021; pp. 25–45. [Google Scholar]
- Wang, Y.; Chen, C.F.; Kong, P.Y.; Li, H.; Wen, Q. A Cyber–Physical–Social Perspective on Future Smart Distribution Systems. Proc. IEEE 2022, 11, 1–31. [Google Scholar] [CrossRef]
- Zhang, Q.; Tang, C.; Bai, T.; Meng, Z.; Zhan, Y.; Niu, J.; Deen, M.J. A two-layer optimal scheduling framework for energy savings in a data center for Cyber–Physical–Social Systems. J. Syst. Archit. 2021, 116, 102050. [Google Scholar] [CrossRef]
- Xu, T.; Wendt, J.B.; Potkonjak, M. Security of IoT systems: Design challenges and opportunities. In Proceedings of the 2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, USA, 3–6 November 2014; pp. 417–423. [Google Scholar]
- Thapa, B.; Fernandez, E.B.; Cardei, I.; Larrondo-Petrie, M.M. Abstract Entity Patterns for Sensors and Actuators. Computers 2023, 12, 93. [Google Scholar] [CrossRef]
- Wang, D.; Amin, M.T.; Li, S.; Abdelzaher, T.; Kaplan, L.; Gu, S.; Pan, C.; Liu, H.; Aggarwal, C.C.; Ganti, R.; et al. Using humans as sensors: An estimation-theoretic perspective. In Proceedings of the IPSN-14 13th International Symposium on Information Processing in Sensor Networks, Berlin, Germany, 15–17 April 2014; pp. 35–46. [Google Scholar]
- Velasco, C.; Pombo, M.; Barbosa Escobar, F. Value in the Age of Non-Fungible Tokens (NFTs).
- Borri, N.; Liu, Y.; Tsyvinski, A. The Economics of Non-Fungible Tokens. 2022. Available online: https://ssrn.com/abstract=4052045 (accessed on 29 July 2023). [CrossRef]
- Nadini, M.; Alessandretti, L.; Di Giacinto, F.; Martino, M.; Aiello, L.M.; Baronchelli, A. Mapping the NFT revolution: Market trends, trade networks, and visual features. Sci. Rep. 2021, 11, 20902. [Google Scholar] [CrossRef]
- Makridis, C.A.; Liao, G.Y. Democratizing effects of digital ledger technologies: Implications for economic mobility. Front. Blockchain 2023, 6, 972183. [Google Scholar] [CrossRef]
- Dalacoura, K. The 2011 uprisings in the Arab Middle East: Political change and geopolitical implications. Int. Aff. 2012, 88, 63–79. [Google Scholar] [CrossRef]
- Bar-Yam, Y. General features of complex systems. In Encyclopedia of Life Support Systems; UNESCO, EOLSS Publishers: Oxford, UK, 2002; Volume 1. [Google Scholar]
- Holland, J.H. Complexity: A Very Short Introduction; OUP: Oxford, UK, 2014. [Google Scholar]
- Ladyman, J.; Lambert, J.; Wiesner, K. What is a complex system? Eur. J. Philos. Sci. 2013, 3, 33–67. [Google Scholar] [CrossRef]
- Sturmberg, J.P. Health System Redesign; Springer: Berlin/Heidelberg, Germany, 2018; pp. 21–44. [Google Scholar]
- Montuori, A. Creativity and the Arab Spring. East–West Aff. 2013, 1, 30–47. [Google Scholar]
- Açıkalın, Ş.N.; Artun, E.C. The concept of self-organized criticality: The case study of the Arab uprising. In Chaos, Complexity and Leadership 2017: Explorations of Chaos and Complexity Theory; Springer: Cham, Switzerland, 2019; Volume 5, pp. 73–85. [Google Scholar]
- Nandhini, R.S.; Lakshmanan, R. A Review of the Integration of Cyber-Physical System and Internet of Things. Int. J. Adv. Comput. Sci. Appl. 2022, 13, 10761. [Google Scholar] [CrossRef]
- Rani, S.; Kataria, A.; Chauhan, M. Fog computing in industry 4.0: Applications and challenges—A research roadmap. In Energy Conservation Solutions for Fog-Edge Computing Paradigms; Springer: Berlin/Heidelberg, Germany, 2022; pp. 173–190. [Google Scholar]
- Rao, P.M.; Deebak, B. Security and privacy issues in smart cities/industries: Technologies, applications, and challenges. J. Ambient. Intell. Humaniz. Comput. 2022, 5, 1–37. [Google Scholar] [CrossRef]
- Ly, K.; Jin, Y. Security challenges in CPS and IoT: From end-node to the system. In Proceedings of the 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Pittsburgh, PA, USA, 11–13 July 2016; pp. 63–68. [Google Scholar]
- Gati, N.J.; Yang, L.T.; Feng, J.; Nie, X.; Ren, Z.; Tarus, S.K. Differentially private data fusion and deep learning Framework for Cyber–Physical–Social Systems: State-of-the-art and perspectives. Inf. Fusion 2021, 76, 298–314. [Google Scholar] [CrossRef]
- Song, M.; Cai, Y.; Gao, C.; Chen, T.; Yao, Y.; Ming, H. Transactive energy in power distribution systems: Paving the path towards cyber-physical-social system. Int. J. Electr. Power Energy Syst. 2022, 142, 108289. [Google Scholar] [CrossRef]
- Wang, F.Y.; Rudas, I.J.; Wu, D.; Wang, X.; Yuan, Y.; Zhang, J.J.; Li, Y.; Bennett, G.; Bassiri-Gharb, N. Artificial Identification, Blockchain, Cyberphysical Social Systems, Digital Twins, and Parallel Intelligence: Opportunities and Synergies Between the IEEE Council on Radio-Frequency Identification and Systems, Man, and Cybernetics Society [Essay]. IEEE Syst. Man Cybern. Mag. 2021, 7, 61-C4. [Google Scholar] [CrossRef]
- Altulaihan, E.; Almaiah, M.A.; Aljughaiman, A. Cybersecurity threats, countermeasures and mitigation techniques on the IoT: Future research directions. Electronics 2022, 11, 3330. [Google Scholar] [CrossRef]
- Siddiqi, M.A.; Pak, W.; Siddiqi, M.A. A study on the psychology of social engineering-based cyberattacks and existing countermeasures. Appl. Sci. 2022, 12, 6042. [Google Scholar] [CrossRef]
- Albladi, S.M.; Weir, G.R. Predicting individuals’ vulnerability to social engineering in social networks. Cybersecurity 2020, 3, 7. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, H.; Sun, L. Social engineering in cybersecurity: Effect mechanisms, human vulnerabilities and attack methods. IEEE Access 2021, 9, 11895–11910. [Google Scholar] [CrossRef]
- Khargonekar, P.P.; Sampath, M. A framework for ethics in cyber-physical-human systems. IFAC-PapersOnLine 2020, 53, 17008–17015. [Google Scholar] [CrossRef]
- Chui, M.; Collins, M.; Patel, M. The Internet of Things: Catching up to an Accelerating Opportunity; McKinsey & Company: New York, NY, USA, 2021. [Google Scholar]
- Ning, H.; Lin, Y.; Wang, W.; Wang, H.; Shi, F.; Zhang, X.; Daneshmand, M. Cyberology: Cyber-Physical-Social-Thinking Spaces based Discipline and Inter-discipline Hierarchy for Metaverse (General Cyberspace). IEEE Internet Things J. 2022, 3, 2091. [Google Scholar]
- Chent, X.; Liang, W.; Xu, J.; Wang, C.; Li, K.C.; Qiu, M. An Efficient Service Recommendation Algorithm for Cyber-Physical-Social Systems. IEEE Trans. Netw. Sci. Eng. 2022, 9, 3847–3859. [Google Scholar] [CrossRef]
- Zhou, Y.; Yu, F.R.; Chen, J.; Kuo, Y. Cyber-physical-social systems: A state-of-the-art survey, challenges and opportunities. IEEE Commun. Surv. Tutorials 2019, 22, 389–425. [Google Scholar] [CrossRef]
- Mohebbi, S.; Zhang, Q.; Wells, E.C.; Zhao, T.; Nguyen, H.; Li, M.; Abdel-Mottaleb, N.; Uddin, S.; Lu, Q.; Wakhungu, M.J. Cyber-physical-social interdependencies and organizational resilience: A review of water, transportation, and cyber infrastructure systems and processes. Sustain. Cities Soc. 2020, 62, 102327. [Google Scholar] [CrossRef]
- Abera, Y.B.; Naudet, Y.; Panetto, H. A new paradigm and meta-model for cyber-physical-social systems. IFAC-PapersOnLine 2020, 53, 10949–10954. [Google Scholar] [CrossRef]
- Zhou, T.; Lin, M. Deadline-Aware Deep-Recurrent-Q-Network Governor for Smart Energy Saving. IEEE Trans. Netw. Sci. Eng. 2022, 9, 3886–3895. [Google Scholar] [CrossRef]
- Wang, Y. Probabilistic Modeling of Information Dynamics in Networked Cyber–Physical–Social Systems. IEEE Internet Things J. 2021, 8, 14934–14947. [Google Scholar] [CrossRef]
- Sowe, S.K.; Zettsu, K. Human Factors in Cyber-Physical Social Systems: Leveraging Social Sensor Data. Front. Artif. Intell. Appl. 2016, 280, 157–165. [Google Scholar] [CrossRef]
- Smirnov, A.; Kashevnik, A.; Shilov, N. Cyber-Physical-Social System Self-Organization: Ontology-Based Multi-level Approach and Case Study. In Proceedings of the 2015 IEEE 9th International Conference on Self-Adaptive and Self-Organizing Systems, Cambridge, MA, USA, 21–25 September 2015; pp. 168–169. [Google Scholar] [CrossRef]
- Mitchell, M.; Newman, M. Complex systems theory and evolution. Encycl. Evol. 2002, 1, 1–5. [Google Scholar]
- Ziemelis, K.; Allen, L. Complex systems. Nature 2001, 410, 241. [Google Scholar] [CrossRef]
- Collinson, S.; Jay, M. From complexity to simplicity. In Unleash Your Organisation’s Potential; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Guckenheimer, J.; Ottino, J.M. Foundations for Complex Systems Research in the Physical Sciences and Engineering, Report from an NSF Workshop; Cornell University: Cornell, NY, USA, 2008. [Google Scholar]
- Chen, Q.; Wang, W.; Huang, K.; Coenen, F. Zero-Shot Text Classification via Knowledge Graph Embedding for Social Media Data. IEEE Internet Things J. 2022, 9, 9205–9213. [Google Scholar] [CrossRef]
- Zhang, J.J.; Wang, F.Y.; Wang, X.; Xiong, G.; Zhu, F.; Lv, Y.; Hou, J.; Han, S.; Yuan, Y.; Lu, Q.; et al. Cyber-Physical-Social Systems: The State of the Art and Perspectives. IEEE Trans. Comput. Soc. Syst. 2018, 5, 829–840. [Google Scholar] [CrossRef]
- Maier, M.; Ebrahimzadeh, A.; Beniiche, A.; Rostami, S. The Art of 6G (TAO 6G): How to wire Society 5.0. J. Opt. Commun. Netw. 2022, 14, A101–A112. [Google Scholar] [CrossRef]
- Rickles, D.; Hawe, P.; Shiell, A. A simple guide to chaos and complexity. J. Epidemiol. Community Health 2007, 61, 933–937. [Google Scholar] [CrossRef] [PubMed]
- Chan, S. Complex adaptive systems. In Proceedings of the ESD 83 Research Seminar in Engineering Systems, MIT, Cambridge, MA, USA, 2–5 September 2001; Volume 31, pp. 1–9. [Google Scholar]
- Gell-Mann, M. Complex Adaptation Systems; Number 19; Addison-Wesley: Boston, MA, USA, 1994. [Google Scholar]
- Dooley, K.J. A complex adaptive systems model of organization change. Nonlinear Dyn. Psychol. Life Sci. 1997, 1, 69–97. [Google Scholar] [CrossRef]
- Lloyd, S. Measures of complexity: A nonexhaustive list. IEEE Control. Syst. Mag. 2001, 21, 7–8. [Google Scholar]
- Buckley, W. Society as a complex adaptive system. In Systems Research for Behavioral Science; Routledge: Abingdon, UK, 2017; pp. 490–513. [Google Scholar]
- De Domenico, M.; Brockmann, D.; Camargo, C.; Gershenson, C.; Goldsmith, D.; Jeschonnek, S.; Kay, L.; Nichele, S.; Nicolás, J.; Schmickl, T. Complexity Explained. Springer: Berlin/Heidelberg, Germany, 2019. Available online: https://complexityexplained.github.io (accessed on 29 July 2023).
- Bohdanova, T. Unexpected revolution: The role of social media in Ukraine’s Euromaidan uprising. Eur. View 2014, 13, 133–142. [Google Scholar] [CrossRef]
- Comunello, F.; Anzera, G. Will the revolution be tweeted? A conceptual framework for understanding the social media and the Arab Spring. Islam Christ. Relations 2012, 23, 453–470. [Google Scholar] [CrossRef]
- Kim, K.; Lee, S.Y.T.; Kauffman, R.J. Social informedness and investor sentiment in the GameStop short squeeze. Electron. Mark. 2023, 33, 23. [Google Scholar] [CrossRef]
- Long, S.; Lucey, B.; Xie, Y.; Yarovaya, L. “I just like the stock”: The role of Reddit sentiment in the GameStop share rally. Financ. Rev. 2023, 58, 19–37. [Google Scholar] [CrossRef]
- Surzhko-Harned, L.; Zahuranec, A.J. Framing the revolution: The role of social media in Ukraine’s Euromaidan movement. Natl. Pap. 2017, 45, 758–779. [Google Scholar] [CrossRef]
- Allcott, H.; Gentzkow, M. Social media and fake news in the 2016 election. J. Econ. Perspect. 2017, 31, 211–236. [Google Scholar] [CrossRef]
- Cain, J. I’m the One: Social Media, Social Identity, and Elections. Online J. Commun. Media Technol. 2020, 10, e202025. [Google Scholar] [CrossRef]
- Spohr, D. Fake news and ideological polarization: Filter bubbles and selective exposure on social media. Bus. Inf. Rev. 2017, 34, 150–160. [Google Scholar] [CrossRef]
- Kirby, A. Exploratory Bibliometrics: Using VOSviewer as a Preliminary Research Tool. Publications 2023, 11, 10. [Google Scholar] [CrossRef]
- Wang, J.; Kim, H.S. Visualizing the Landscape of Home IoT Research: A Bibliometric Analysis Using VOSviewer. Sensors 2023, 23, 3086. [Google Scholar] [CrossRef] [PubMed]
- Finandhita, A.; Mega, R.U.; Jumansyah, R.; Rafdhi, A.A.; Oktafiani, D. VOSviewer application analysis: Computational physical chemistry case study. Moroc. J. Chem. 2022, 10, 1–10. [Google Scholar]
- Van Eck, N.J.; Waltman, L. CitNetExplorer: A new software tool for analyzing and visualizing citation networks. J. Inf. 2014, 8, 802–823. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. SciMAT: A new science mapping analysis software tool. J. Am. Soc. Inf. Sci. Technol. 2012, 63, 1609–1630. [Google Scholar] [CrossRef]
- Morooka, F.E.; Junior, A.M.; Sigahi, T.F.; Pinto, J.d.S.; Rampasso, I.S.; Anholon, R. Deep Learning and Autonomous Vehicles: Strategic Themes, Applications, and Research Agenda Using SciMAT and Content-Centric Analysis, a Systematic Review. Mach. Learn. Knowl. Extr. 2023, 5, 763–781. [Google Scholar] [CrossRef]
- Viedma, E.H.; Robles, J.R.L.; Guallar, J.; Cobo, M.J. Global trends in coronavirus research at the time of COVID-19: A general bibliometric approach and content analysis using SciMAT. Prof. Inf. 2020, 29, 11. [Google Scholar]
- Min, W.; Yu, Z. A Bibliometric Analysis of Augmented Reality in Language Learning. Sustainability 2023, 15, 7235. [Google Scholar] [CrossRef]
- Feng, J.; Yang, L.T.; Zhang, R.; Qiang, W.; Chen, J. Privacy Preserving High-Order Bi-Lanczos in Cloud-Fog Computing for Industrial Applications. IEEE Trans. Ind. Inform. 2022, 18, 7009–7018. [Google Scholar] [CrossRef]
- Jiang, Y.; Yin, S.; Kaynak, O. Performance Supervised Plant-Wide Process Monitoring in Industry 4.0: A Roadmap. IEEE Open J. Ind. Electron. Soc. 2021, 2, 21–35. [Google Scholar] [CrossRef]
- Maier, M. 6G as if People Mattered: From Industry 4 0 toward Society 5.0: Aper. In Proceedings of the International Conference on Computer Communications and Networks, ICCCN, Athens, Greece, 19–22 July 2021; Volume 2021. [Google Scholar] [CrossRef]
- Wang, X.; Yang, L.T.; Chen, X.; Deen, M.J.; Jin, J. Improved Multi-Order Distributed HOSVD with Its Incremental Computing for Smart City Services. IEEE Trans. Sustain. Comput. 2021, 6, 456–468. [Google Scholar] [CrossRef]
- Xiong, G.; Li, Z.; Wu, H.; Chen, S.; Dong, X.; Zhu, F.; Lv, Y. Building urban public traffic dynamic network based on CPSS: An integrated approach of big data and AI. Appl. Sci. 2021, 11, 1109. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, K. An approach for chart description generation in cyber–physical–social system. Symmetry 2021, 13, 1552. [Google Scholar] [CrossRef]
- Zhang, Q.; Meng, Z.; Hong, X.; Zhan, Y.; Liu, J.; Dong, J.; Bai, T.; Niu, J.; Deen, M.J. A survey on data center cooling systems: Technology, power consumption modeling and control strategy optimization. J. Syst. Archit. 2021, 119, 102253. [Google Scholar] [CrossRef]
- Zhou, X.; Liang, W.; Ma, J.; Yan, Z.; Wang, K.I.K. 2D Federated Learning for Personalized Human Activity Recognition in Cyber-Physical-Social Systems. IEEE Trans. Netw. Sci. Eng. 2022, 9, 3934–3944. [Google Scholar] [CrossRef]
- Predescu, A.; Arsene, D.; Pahonțu, B.; Mocanu, M.; Chiru, C. A Serious Gaming Approach for Crowdsensing in Urban Water Infrastructure with Blockchain Support. Appl. Sci. 2021, 11, 1449. [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, Z.; Hu, Z.; Geng, S.; Chen, J. A Many-Objective Optimization Based Intelligent High Performance Data Processing Model for Cyber-Physical-Social Systems. IEEE Trans. Netw. Sci. Eng. 2022, 9, 3825–3834. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, P.; Yu, J.; Lin, J.; Xiong, N.N. Machine Learning on Cloud with Blockchain: A Secure, Verifiable and Fair Approach to Outsource the Linear Regression. IEEE Trans. Netw. Sci. Eng. 2022, 9, 3956–3967. [Google Scholar] [CrossRef]
- Banabilah, S.; Aloqaily, M.; Alsayed, E.; Malik, N.; Jararweh, Y. Federated learning review: Fundamentals, enabling technologies, and future applications. Inf. Process. Manag. 2022, 59, 103061. [Google Scholar] [CrossRef]
- Ghimire, B.; Rawat, D.B. Recent advances on federated learning for cybersecurity and cybersecurity for federated learning for internet of things. IEEE Internet Things J. 2022, 19, 1017. [Google Scholar] [CrossRef]
- Hu, J.; Dong, S.; Zhang, L.; Chen, Y.; Xu, K. Cyber–physical–social hazard analysis for LNG port terminal system based on interdependent network theory. Saf. Sci. 2021, 137, 105180. [Google Scholar] [CrossRef]
- Feng, J.; Yang, L.T.; Nie, X.; Gati, N.J. Edge-Cloud-Aided Differentially Private Tucker Decomposition for Cyber-Physical-Social Systems. IEEE Internet Things J. 2022, 9, 8387–8396. [Google Scholar] [CrossRef]
- Wang, X.; Yang, L.T.; Ren, L.; Wang, Y.; Deen, M.J. A tensor-based computing and optimization model for intelligent edge services. IEEE Netw. 2022, 36, 40–44. [Google Scholar] [CrossRef]
- Yu, H.; Yang, L.T.; Fan, X.; Zhang, Q. A deep residual computation model for heterogeneous data learning in smart Internet of Things. Appl. Soft Comput. 2021, 107, 107361. [Google Scholar] [CrossRef]
- MacÍas, A.; Navarro, E. Paradigms for the conceptualization of Cyber-Physical-Social-Thinking hyperspace: A Thematic Synthesis. J. Ambient. Intell. Smart Environ. 2022, 14, 285–316. [Google Scholar] [CrossRef]
- Mendhurwar, S.; Mishra, R. Integration of social and IoT technologies: Architectural framework for digital transformation and cyber security challenges. Enterp. Inf. Syst. 2021, 15, 565–584. [Google Scholar] [CrossRef]
- Yang, B.; Guo, H.; Cao, E. Design of cyber-physical-social systems with forensic-awareness based on deep learning. In Advances in Computers; Elsevier: Amsterdam, The Netherlands, 2021; Volume 120, pp. 39–79. [Google Scholar] [CrossRef]
- Che, H.; Pan, B.; Leung, M.F.; Cao, Y.; Yan, Z. Tensor Factorization With Sparse and Graph Regularization for Fake News Detection on Social Networks. IEEE Trans. Comput. Soc. Syst. 2023, 9, 287. [Google Scholar] [CrossRef]
- Azzimonti, M.; Fernandes, M. Social media networks, fake news, and polarization. Eur. J. Political Econ. 2023, 76, 102256. [Google Scholar] [CrossRef]
- Törnberg, P.; Andersson, C.; Lindgren, K.; Banisch, S. Modeling the emergence of affective polarization in the social media society. PLoS ONE 2021, 16, e0258259. [Google Scholar] [CrossRef] [PubMed]
- Del Vicario, M.; Scala, A.; Caldarelli, G.; Stanley, H.E.; Quattrociocchi, W. Modeling confirmation bias and polarization. Sci. Rep. 2017, 7, 40391. [Google Scholar] [CrossRef] [PubMed]
- Hugues, J.; Cancila, D. Increasingly Autonomous CPS: Taming Emergent Behaviors from an Architectural Perspective; CEUR Workshop Proceedings (CEUR-WS.org): Aachen, Germany, 2022. [Google Scholar]
- Tyszberowicz, S.; Faitelson, D. Emergence in cyber-physical systems: Potential and risk. Front. Inf. Technol. Electron. Eng. 2020, 21, 1554–1566. [Google Scholar] [CrossRef]
- Li, Z.; Sim, C.H.; Low, M.Y.H. A survey of emergent behavior and its impacts in agent-based systems. In Proceedings of the 2006 4th IEEE International Conference on Industrial Informatics, Singapore, 16–18 August 2006; pp. 1295–1300. [Google Scholar]
Report Term | Scopus Search Phrase |
---|---|
Complex system | “*Complex system*” OR “*Complexity*” |
Cyber–Physical System/CPS | “*Cyber Physical System*” OR “*Cyber–Physical System*” |
Cyber–Physical–Social System/CPSS | “*Cyber Physical Social System*” OR “*Cyber–Physical Social System*” |
Social Media | “*Social media*” |
Influence | “*Influence*” |
Cyber Security | “*Cybersecurity*” OR “*Cyber security*” |
CPSS | CPS | ||
---|---|---|---|
Three Terms | Complex system + Social Media | 0 | 3 |
Three Terms | Complex system + Cyber Security | 0 | 182 |
Four Terms | Complex system + Social Media + Cyber Security | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobb, T.; Turnbull, B.; Moustafa, N. A Holistic Review of Cyber–Physical–Social Systems: New Directions and Opportunities. Sensors 2023, 23, 7391. https://doi.org/10.3390/s23177391
Sobb T, Turnbull B, Moustafa N. A Holistic Review of Cyber–Physical–Social Systems: New Directions and Opportunities. Sensors. 2023; 23(17):7391. https://doi.org/10.3390/s23177391
Chicago/Turabian StyleSobb, Theresa, Benjamin Turnbull, and Nour Moustafa. 2023. "A Holistic Review of Cyber–Physical–Social Systems: New Directions and Opportunities" Sensors 23, no. 17: 7391. https://doi.org/10.3390/s23177391
APA StyleSobb, T., Turnbull, B., & Moustafa, N. (2023). A Holistic Review of Cyber–Physical–Social Systems: New Directions and Opportunities. Sensors, 23(17), 7391. https://doi.org/10.3390/s23177391