Estimating Blood Pressure during Exercise with a Cuffless Sphygmomanometer
Abstract
:1. Introduction
2. Principle
3. Data Collection and Signal Processing
3.1. Experimental Method
3.2. Skewness Signal Quality Index
3.3. Feature Extraction
3.4. Machine Learning Model: Long Short-Term Memory
3.5. Error Metrics
4. Results
4.1. Preprocessing
4.2. Feature Extraction
4.3. BP Estimation
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: A pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 2021, 398, 957–980. [Google Scholar] [CrossRef] [PubMed]
- George, J.; MacDonald, T. Home Blood Pressure Monitoring. Eur. Cardiol. Rev. 2015, 10, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Asayama, K.; Thijs, L.; Brguljan-Hitij, J.; Niiranen, T.J.; Hozawa, A.; Boggia, J.; Aparicio, L.S.; Hara, A.; Johansson, J.K.; Ohkubo, T.; et al. Risk Stratification by Self-Measured Home Blood Pressure across Categories of Conventional Blood Pressure: A Participant-Level Meta-Analysis. PLOS Med. 2014, 11, e1001591. [Google Scholar] [CrossRef] [PubMed]
- Tamura, T. Cuffless Blood Pressure Monitors: Principles, Standards and Approval for Medical Use. IEICE Trans. Commun. 2021, E104B, 580–586. [Google Scholar] [CrossRef]
- Mukkamala, R.; Stergiou, G.S.; Avolio, A.P. Cuffless Blood Pressure Measurement. Annu. Rev. Biomed. Eng. 2022, 24, 203–230. [Google Scholar] [CrossRef]
- Almeida, T.P.; Cortés, M.; Perruchoud, D.; Alexandre, J.; Vermare, P.; Sola, J.; Shah, J.; Marques, L.; Pellaton, C. Aktiia cuffless blood pressure monitor yields equivalent daytime blood pressure measurements compared to a 24-h ambulatory blood pressure monitor: Preliminary results from a prospective single-center study. Hypertens. Res. 2023, 46, 1456–1461. [Google Scholar] [CrossRef]
- Stergiou, G.S.; Mukkamala, R.; Avolio, A.; Kyriakoulis, K.G.; Mieke, S.; Murray, A.; Parati, G.; Schutte, A.E.; Sharman, J.E.; Asmar, R.; et al. Cuffless blood pressure measuring devices: Review and statement by the European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability. J. Hypertens. 2022, 40, 1449–1460. [Google Scholar] [CrossRef]
- Mukkamala, R.; Shroff, S.G.; Landry, C.; Kyriakoulis, K.G.; Avolio, A.P.; Stergiou, G.S. The Microsoft Research Aurora Project: Important Findings on Cuffless Blood Pressure Measurement. Hypertension 2023, 80, 534–540. [Google Scholar] [CrossRef]
- Evangelos, K.; Erica, S.; Marc, A.S.; Rohan, K. Individualising intensive systolic blood pressure reduction in hypertension using computational trial phenomaps and machine learning: A post-hoc analysis of randomised clinical trials. Lancet Digit. Health 2022, 4, e796–e805. [Google Scholar] [CrossRef]
- Hatib, F.; Jian, Z.; Buddi, S.; Lee, C.; Settels, J.; Sibert, K.; Rinehart, J.; Cannesson, M. Machine-learning Algorithm to Predict Hypotension Based on High-fidelity Arterial Pressure Waveform Analysis. Anesthesiology 2018, 129, 663–674. [Google Scholar] [CrossRef]
- Ismail, S.N.A.; Nayan, N.A.; Jaafar, R.; May, Z. Recent Advances in Non-Invasive Blood Pressure Monitoring and Prediction Using a Machine Learning Approach. Sensors 2022, 22, 6195. [Google Scholar] [CrossRef] [PubMed]
- Nidigattu, G.R.; Mattela, G.; Jana, S. Non-invasive modeling of heart rate and blood pressure from a photoplethysmography by using machine learning techniques. In Proceedings of the International Conference on COMmunication Systems & NETworkS (COMSNETS), Bangalore, India, 7–11 January 2020; pp. 7–12. [Google Scholar]
- Kurl, S.; Laukkanen, J.; Rauramaa, R.; Lakka, T.; Sivenius, J.; Salonen, J. Systolic Blood Pressure Response to Exercise Stress Test and Risk of Stroke. Stroke 2001, 32, 2036–2041. [Google Scholar] [CrossRef] [PubMed]
- Elgendi, M.; Fletcher, R.; Liang, Y.; Howard, N.; Lovell, N.H.; Abbott, D.; Lim, K.; Ward, R. The use of photoplethysmography for assessing hypertension. NPJ Digit. Med. 2019, 2, 60. [Google Scholar] [CrossRef]
- Baruch, M.C.; Warburton, D.E.; Bredin, S.S.; Cote, A.; Gerdt, D.W.; Adkins, C.M. Pulse Decomposition Analysis of the digital arterial pulse during hemorrhage simulation. Nonlinear Biomed. Phys. 2011, 5, 1. [Google Scholar] [CrossRef] [PubMed]
- Elgendi, M. On the Analysis of Fingertip Photoplethysmogram Signals. Curr. Cardiol. Rev. 2012, 8, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Epstein, S.; Willemet, M.; Chowienczyk, P.J.; Alastruey, J. Reducing the number of parameters in 1D arterial blood flow modeling: Less is more for patient-specific simulations. Am. J. Physiol. Circ. Physiol. 2015, 309, H222–H234. [Google Scholar] [CrossRef]
- Shin, H.; Min, S.D. Feasibility study for the non-invasive blood pressure estimation based on ppg morphology: Normotensive subject study. Biomed. Eng. Online 2017, 16, 10. [Google Scholar] [CrossRef]
- Gratz, I.; Deal, E.; Spitz, F.; Baruch, M.; Allen, I.E.; Seaman, J.E.; Pukenas, E.; Jean, S. Continuous Non-invasive finger cuff CareTaker® comparable to invasive intra-arterial pressure in patients undergoing major intra-abdominal surgery. BMC Anesthesiol. 2017, 17, 48. [Google Scholar] [CrossRef]
- Liu, M.; Po, L.-M.; Fu, H. Cuffless Blood Pressure Estimation Based on Photoplethysmography Signal and Its Second Derivative. Int. J. Comput. Theory Eng. 2017, 9, 202–206. [Google Scholar] [CrossRef]
- Liu, Q.; Yan, B.P.; Yu, C.-M.; Zhang, Y.-T.; Poon, C.C.Y. Attenuation of Systolic Blood Pressure and Pulse Transit Time Hysteresis During Exercise and Recovery in Cardiovascular Patients. IEEE Trans. Biomed. Eng. 2014, 61, 346–352. [Google Scholar] [CrossRef]
- Miki, K.; Yoshimoto, M. Exercise-Induced Modulation of Baroreflex Control of Sympathetic Nerve Activity. Front. Neurosci. 2018, 12, 493. [Google Scholar] [CrossRef] [PubMed]
- Pilz, N.; Andreas, P.; Tomas, L.B. The pre-ejection period is a highly stress dependent parameter of paramount importance for pulse-wave-velocity based applications. Front. Cardiovasc. Med. 2023, 10, 1138356. [Google Scholar] [CrossRef] [PubMed]
- Esmaili, A.; Mohammad, K.; Mahdi, S. Nonlinear Cuffless Blood Pressure Estimation of Healthy Subjects Using Pulse Transit Time and Arrival Time. IEEE Trans. Instrum. Meas. 2017, 66, 3299–3308. [Google Scholar] [CrossRef]
- Sun, S.; Bezemer, R.; Long, X.; Muehlsteff, J.; Aarts, R.M. Systolic blood pressure estimation using PPG and ECG during physical exercise. Physiol. Meas. 2016, 37, 2154–2169. [Google Scholar] [CrossRef]
- Yabe, H.; Kono, K.; Onoyama, A.; Kiyota, A.; Moriyama, Y.; Okada, K.; Kasuga, H.; Masuda, A. Predicting a target exercise heart rate that reflects the anaerobic threshold in nonbeta-blocked hemodialysis patients: The Karvonen and heart rate reserve formulas. Ther. Apher. Dial. 2021, 25, 884–889. [Google Scholar] [CrossRef]
- Elgendi, M. Optimal Signal Quality Index for Photoplethysmogram Signals. Bioengineering 2016, 3, 21. [Google Scholar] [CrossRef]
- Shuzan, N.I.; Chowdhury, M.H.; Chowdhury, M.E.H.; Murugappan, M.; Hoque Bhuiyan, E.; Ayari, M.A.; Khandakar, A. Machine Learning-Based Respiration Rate and Blood Oxygen Saturation Estimation Using Photoplethysmogram Signals. Bioengineering 2023, 10, 167. [Google Scholar] [CrossRef]
- Chowdhury, M.H.; Shuzan, N.I.; Chowdhury, M.E.; Mahbub, Z.B.; Uddin, M.M.; Khandakar, A.; Reaz, M.B.I. Estimating Blood Pressure from the Photoplethysmogram Signal and Demographic Features Using Machine Learning Techniques. Sensors 2020, 20, 3127. [Google Scholar] [CrossRef]
- Li, Y.-H.; Harfiya, L.N.; Purwandari, K.; Lin, Y.-D. Real-Time Cuffless Continuous Blood Pressure Estimation Using Deep Learning Model. Sensors 2020, 20, 5606. [Google Scholar] [CrossRef]
- Patel, D.J.; Janicki, J.S.; Vaishnav, R.N.; Young, J.T. Dynamic Anisotropic Viscoelastic Properties of the Aorta in Living Dogs. Circ. Res. 1973, 32, 93–107. [Google Scholar] [CrossRef]
- Miyachi, Y.; Arakawa, M.; Kanai, H. Accuracy improvement in measurement of arterial wall elasticity by applying pulse inversion to phased-tracking method. Jpn. J. Appl. Phys. 2018, 57, 07LF08. [Google Scholar] [CrossRef]
PPG Signal | ||
---|---|---|
Systolic peak | 1 | The amplitude of first peak from PPG waveform |
Diastolic peak | 2 | The amplitude of first peak from PPG waveform |
Systolic peak time | 3 | The time interval from the foot of the waveform to the systolic peak (‘t1’) |
∆T | 4 | The time interval from systolic peak time to diastolic peak time |
Diastolic peak time | 5 | The time interval from systolic peak time to diastolic peak time |
Pulse interval | 6 | The distance between the beginning and the end of the PPG waveform |
Augmentation index | 7 | The ratio of diastolic peak amplitude and systolic peak amplitude |
Second derivative PPG signal | ||
Peak a | 8 | The first maximum peak from the second derivative of the PPG waveform |
b | 9 | The first minimum peak from the second derivative of the PPG waveform |
c | 10 | The second maximum peak from the second derivative of the PPG waveform |
d | 11 | The second minimum peak from the second derivative of the PPG waveform |
e | 12 | The third maximum peak from the second derivative of the PPG waveform |
Ta | 13 | The time interval from the foot of the PPG waveform to the time at which first peal of second derivative occurred |
Tb-a | 14 | The time interval from first maximum peak to first minimum peak |
Tb-c | 15 | The time interval from first minimum peak to second maximum peak |
Tc-d | 16 | The time interval from second maximum peak to second minimum peak |
Td-e | 17 | The time interval from second minimum peak to third maximum peak |
Rest | Exercise | Recovery | |
---|---|---|---|
Before processing | 14,290 | 21,174 | 17,193 |
After processing | 10,878 | 6566 | 14,419 |
Rejection rate [%] | 23.88 | 68.99 | 16.13 |
FeatureScore | ① | ② | ③ | ④ | ⑤ | ⑥ | ⑦ | ⑧ | ⑨ | ⑩ | ⑪ | ⑫ | ⑬ | ⑭ | ⑮ | ⑯ | ⑰ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rest | SBP | 0.0084 | 0.0066 | 0.0012 | 0.0025 | 0.0020 | 0.0017 | 0.0047 | 0.0013 | 0.0011 | 0.0017 | 0.0032 | 0.0047 | −0.0001 | 0.0004 | −0.0015 | −0.0001 | 0.0014 |
DBP | 0.0070 | 0.0065 | 0.0016 | 0.0034 | 0.0031 | 0.0032 | 0.0050 | 0.0036 | 0.0011 | 0.0018 | 0.0029 | 0.0049 | −0.0001 | 0.0016 | −0.0008 | 0.0001 | 0.0022 | |
Exercise | SBP | 0.0309 | 0.0203 | 0.0088 | 0.0152 | 0.0164 | 0.0218 | 0.0156 | 0.0202 | 0.0226 | 0.0269 | 0.0288 | 0.0275 | −0.0012 | 0.0117 | 0.0100 | 0.0102 | 0.0148 |
DBP | 0.0273 | 0.0202 | 0.0081 | 0.0162 | 0.0175 | 0.0246 | 0.0168 | 0.0199 | 0.0179 | 0.0269 | 0.0284 | 0.0303 | −0.0008 | 0.0125 | 0.0106 | 0.0125 | 0.0174 | |
Recovery | SBP | 0.0101 | 0.0076 | 0.0003 | 0.0027 | 0.0030 | 0.0001 | 0.0061 | 0.0022 | 0.0039 | 0.0079 | 0.0057 | 0.0075 | −0.0004 | −0.0008 | −0.0009 | −0.0003 | 0.0009 |
DBP | 0.0092 | 0.0080 | 0.0002 | 0.0026 | 0.0026 | 0.0005 | 0.0057 | 0.0033 | 0.0030 | 0.0081 | 0.0061 | 0.0064 | −0.0003 | −0.0003 | −0.0003 | 0.0002 | 0.0012 |
SBP | DBP | |||||
---|---|---|---|---|---|---|
MAE | ME | SD | MAE | ME | SD | |
Rest | 4.98 | 0.50 | 7.19 | 3.34 | 0.39 | 5.48 |
Exercise | 4.80 | 0.32 | 7.76 | 3.47 | –0.91 | 7.15 |
Recovery | 4.80 | –0.48 | 7.55 | 2.76 | –1.77 | 6.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayashi, K.; Maeda, Y.; Yoshimura, T.; Huang, M.; Tamura, T. Estimating Blood Pressure during Exercise with a Cuffless Sphygmomanometer. Sensors 2023, 23, 7399. https://doi.org/10.3390/s23177399
Hayashi K, Maeda Y, Yoshimura T, Huang M, Tamura T. Estimating Blood Pressure during Exercise with a Cuffless Sphygmomanometer. Sensors. 2023; 23(17):7399. https://doi.org/10.3390/s23177399
Chicago/Turabian StyleHayashi, Kenta, Yuka Maeda, Takumi Yoshimura, Ming Huang, and Toshiyo Tamura. 2023. "Estimating Blood Pressure during Exercise with a Cuffless Sphygmomanometer" Sensors 23, no. 17: 7399. https://doi.org/10.3390/s23177399
APA StyleHayashi, K., Maeda, Y., Yoshimura, T., Huang, M., & Tamura, T. (2023). Estimating Blood Pressure during Exercise with a Cuffless Sphygmomanometer. Sensors, 23(17), 7399. https://doi.org/10.3390/s23177399