Comparing NISAR (Using Sentinel-1), USDA/NASS CDL, and Ground Truth Crop/Non-Crop Areas in an Urban Agricultural Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Study Area
2.3. Field Data
2.4. Remote Sensing Data
2.5. Developing a Binary Crop Map from the CDL
2.6. NISAR CA Approach
2.7. Threshold Selection
2.8. Data Processing Framework and Assessment Methods
3. Results and Analysis
3.1. Pixel-Wise Correspondence between CA and CDL
3.2. Accuracy Assessment of CA and CDL versus Ground Truth Polygons
4. Discussion
4.1. Challenges for Cropland Mapping Using Spaceborne Radar Data
4.2. Challenges for CDL Mapping
4.3. Challenges for CA Mapping
4.4. Extension of the CA Algorithm to Other Regions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fowler, D.; Coyle, M.; Skiba, U.; Sutton, M.A.; Cape, J.N.; Reis, S.; Sheppard, L.J.; Jenkins, A.; Grizzetti, B.; Galloway, J.N. The Global Nitrogen Cycle in the Twenty-First Century. Philos. Trans. R. Soc. Biol. Sci. 2013, 368, 20130164. [Google Scholar]
- Lal, R. Agricultural Activities and the Global Carbon Cycle. Nutr. Cycl. Agroecosystems 2004, 70, 103–116. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Sahagian, D. Anthropogenic Disturbance of the Terrestrial Water Cycle. Bioscience 2000, 50, 753–765. [Google Scholar] [CrossRef]
- Fisher, J.B.; Melton, F.; Middleton, E.; Hain, C.; Anderson, M.; Allen, R.; McCabe, M.F.; Hook, S.; Baldocchi, D.; Townsend, P.A. The Future of Evapotranspiration: Global Requirements for Ecosystem Functioning, Carbon and Climate Feedbacks, Agricultural Management, and Water Resources. Water Resour. Res. 2017, 53, 2618–2626. [Google Scholar] [CrossRef]
- Fritz, S.; See, L.; Bayas, J.C.L.; Waldner, F.; Jacques, D.; Becker-Reshef, I.; Whitcraft, A.; Baruth, B.; Bonifacio, R.; Crutchfield, J. A Comparison of Global Agricultural Monitoring Systems and Current Gaps. Agric. Syst. 2019, 168, 258–272. [Google Scholar] [CrossRef]
- Rossow, W.B.; Schiffer, R.A. Advances in Understanding Clouds from ISCCP. Bull. Am. Meteorol. Soc. 1999, 80, 2261–2287. [Google Scholar] [CrossRef]
- Gao, F.; Anderson, M.; Daughtry, C.; Karnieli, A.; Hively, D.; Kustas, W. A Within-Season Approach for Detecting Early Growth Stages in Corn and Soybean Using High Temporal and Spatial Resolution Imagery. Remote Sens. Environ. 2020, 242, 111752. [Google Scholar] [CrossRef]
- Vorster, A.G.; Evangelista, P.H.; Stovall, A.E.L.; Ex, S. Variability and Uncertainty in Forest Biomass Estimates from the Tree to Landscape Scale: The Role of Allometric Equations. Carbon Balance Manag. 2020, 15, 8. [Google Scholar] [CrossRef]
- Boryan, C.; Yang, Z.; Mueller, R.; Craig, M. Monitoring US Agriculture: The US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program. Geocarto Int. 2011, 26, 341–358. [Google Scholar] [CrossRef]
- Fisette, T.; Rollin, P.; Aly, Z.; Campbell, L.; Daneshfar, B.; Filyer, P.; Smith, A.; Davidson, A.; Shang, J.; Jarvis, I. AAFC Annual Crop Inventory. In Proceedings of the 2013 Second International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Fairfax, VA, USA, 12–16 August 2013; pp. 270–274. [Google Scholar]
- Pittman, K.; Hansen, M.C.; Becker-Reshef, I.; Potapov, P.V.; Justice, C.O. Estimating Global Cropland Extent with Multi-Year MODIS Data. Remote Sens. 2010, 2, 1844–1863. [Google Scholar] [CrossRef]
- Buchhorn, M.; Lesiv, M.; Tsendbazar, N.-E.; Herold, M.; Bertels, L.; Smets, B. Copernicus Global Land Cover Layers—Collection 2. Remote Sens. 2020, 12, 1044. [Google Scholar] [CrossRef]
- Phalke, A.R.; Özdoğan, M.; Thenkabail, P.S.; Erickson, T.; Gorelick, N.; Yadav, K.; Congalton, R.G. Mapping Croplands of Europe, Middle East, Russia, and Central Asia Using Landsat, Random Forest, and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 167, 104–122. [Google Scholar] [CrossRef]
- Shang, J.; McNairn, H.; Champagne, C.; Jiao, X. Contribution of Multi-Frequency, Multi-Sensor, and Multi-Temporal Radar Data to Operational Annual Crop Mapping. In Proceedings of the IGARSS 2008—2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008; Volume 3, p. III-378. [Google Scholar]
- Entekhabi, D.; Yueh, S.; O’Neill, P.E.; Kellogg, K.H.; Allen, A.; Bindlish, R.; Brown, M.; Chan, S.; Colliander, A.; Crow, W.T. SMAP Handbook–Soil Moisture Active Passive: Mapping Soil Moisture and Freeze/Thaw from Space; JPL Publication: Pasadena, CA, USA, 2014. [Google Scholar]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M. GMES Sentinel-1 Mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Abdikan, S.; Sanli, F.B.; Ustuner, M.; Calò, F. Land Cover Mapping Using Sentinel-1 SAR Data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 757–761. [Google Scholar] [CrossRef]
- Baker, N. Joint Polar Satellite System (JPSS) VIIRS Snow Cover Algorithm Theoretical Basis Document (ATBD). NASA Goddard Space Flight Cent. Tech. Doc. 2011, 474, 52. [Google Scholar]
- NISAR Science Team NISAR Science Users’ Handbook; NASA: Washington, DC, USA, 2020.
- Mandal, D.; Kumar, V.; Ratha, D.; Dey, S.; Bhattacharya, A.; Lopez-Sanchez, J.M.; McNairn, H.; Rao, Y.S. Dual Polarimetric Radar Vegetation Index for Crop Growth Monitoring Using Sentinel-1 SAR Data. Remote Sens. Environ. 2020, 247, 111954. [Google Scholar] [CrossRef]
- Bhogapurapu, N.; Dey, S.; Bhattacharya, A.; Mandal, D.; Lopez-Sanchez, J.M.; McNairn, H.; López-Martínez, C.; Rao, Y.S. Dual-Polarimetric Descriptors from Sentinel-1 GRD SAR Data for Crop Growth Assessment. ISPRS J. Photogramm. Remote Sens. 2021, 178, 20–35. [Google Scholar] [CrossRef]
- Ahmed, R.; Siqueira, P.; Hensley, S. Analyzing the Uncertainty of Biomass Estimates from L-Band Radar Backscatter over the Harvard and Howland Forests. IEEE Trans. Geosci. Remote Sens. 2013, 52, 3568–3586. [Google Scholar] [CrossRef]
- Feldman, A.F.; Akbar, R.; Entekhabi, D. Characterization of Higher-Order Scattering from Vegetation with SMAP Measurements. Remote Sens. Environ. 2018, 219, 324–338. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. A Review of Target Decomposition Theorems in Radar Polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Rosenqvist, A.; Killough, B. A Layman’s Interpretation Guide to L-Band and C-Band Synthetic Aperture Radar Data; Comittee on Earth Observation Satellites: Washington, DC, USA, 2018. [Google Scholar]
- Truckenbrodt, J.; Freemantle, T.; Williams, C.; Jones, T.; Small, D.; Dubois, C.; Thiel, C.; Rossi, C.; Syriou, A.; Giuliani, G. Towards Sentinel-1 SAR Analysis-Ready Data: A Best Practices Assessment on Preparing Backscatter Data for the Cube. Data 2019, 4, 93. [Google Scholar] [CrossRef]
- Zuhlke, M.; Fomferra, N.; Brockmann, C.; Peters, M.; Veci, L.; Malik, J.; Regner, P. SNAP (Sentinel Application Platform) and the ESA Sentinel 3 Toolbox. In Proceedings of the Sentinel-3 for Science Workshop, Venice, Italy, 2–5 June 2015; Volume 734, p. 21. [Google Scholar]
- Pottier, E.; Ferro-Famil, L.; Fitrzyk, M.; Desnos, Y.-L. PolSARpro-BIO: The New Scientific Toolbox for ESA & Third Party Fully Polarimetric SAR Missions. In Proceedings of the EUSAR 2018, 12th European Conference on Synthetic Aperture Radar, Aachen, Germany, 4–7 June 2018; pp. 1–4. [Google Scholar]
- Rosen, P.A.; Gurrola, E.M.; Agram, P.; Cohen, J.; Lavalle, M.; Riel, B.V.; Fattahi, H.; Aivazis, M.A.G.; Simons, M.; Buckley, S.M. The InSAR Scientific Computing Environment 3.0: A Flexible Framework for NISAR Operational and User-Led Science Processing. In Proceedings of the IGARSS 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 4897–4900. [Google Scholar]
- Werner, C.; Wegmüller, U.; Strozzi, T.; Wiesmann, A. Gamma SAR and Interferometric Processing Software. In Proceedings of the ERS-Envisat Symposium, Gothenburg, Sweden, 16–20 October 2000; Citeseer: State College, PA, USA, 2000; Volume 1620, p. 1620. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Kellndorfer, J.; Cartus, O.; Lavalle, M.; Magnard, C.; Milillo, P.; Oveisgharan, S.; Osmanoglu, B.; Rosen, P.A.; Wegmüller, U. Global Seasonal Sentinel-1 Interferometric Coherence and Backscatter Data Set. Sci. Data 2022, 9, 73. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, J.; Anderson, R.; Biessel, R.; Chase, T.; Ellis, O.; Fairbanks, K.; Fleming, C.; Horn, W.; Johnston, A.; Kristenson, H. Skip the Processing: On Demand Analysis-Ready InSAR from ASF. In Proceedings of the AGU Fall Meeting Abstracts, New Orleans, LA, USA, 13–17 December 2021; Volume 2021, p. G45B-0395. [Google Scholar]
- Homer, C.; Huang, C.; Yang, L.; Wylie, B.K.; Coan, M. Development of a 2001 National Land-Cover Database for the United States. Photogramm. Eng. Remote Sens. 2004, 70, 829–840. [Google Scholar] [CrossRef]
- Zanaga, D.; Van De Kerchove, R.; Daems, D.; De Keersmaecker, W.; Brockmann, C.; Kirches, G.; Wevers, J.; Cartus, O.; Santoro, M.; Fritz, S. ESA WorldCover 10 m 2021 V200. 2022. Available online: https://doi.org/10.5281/zenodo.7254221 (accessed on 1 August 2023).
- Sulla-Menashe, D.; Friedl, M.A. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product; USGS: Reston, VA, USA, 2018; pp. 1–18. [Google Scholar]
- Kraatz, S.; Rose, S.; Cosh, M.; Torbick, N.; Huang, X.; Siqueira, P. Performance Evaluation of UAVSAR and Simulated NISAR Data for Crop/Non-Crop Classification over Stoneville, MS. Earth Space Sci. 2021, 8, e2020EA001363. [Google Scholar] [CrossRef]
- Kraatz, S.; Torbick, N.; Jiao, X.; Huang, X.; Dingle Robertson, L.; Davidson, A.; McNairn, H.; Cosh, M.H.; Siqueira, P. Comparison between Dense L-Band and C-Band Synthetic Aperture Radar (SAR) Time Series for Crop Area Mapping over a NISAR Calibration-Validation Site. Agronomy 2021, 11, 273. [Google Scholar] [CrossRef]
- Whelen, T.; Siqueira, P. Coefficient of Variation for Use in Crop Area Classification across Multiple Climates. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 114–122. [Google Scholar] [CrossRef]
- Whelen, T.; Siqueira, P. Time-Series Classification of Sentinel-1 Agricultural Data over North Dakota. Remote Sens. Lett. 2018, 9, 411–420. [Google Scholar] [CrossRef]
- Whelen, T.; Siqueira, P. Time Series Analysis of L-Band SAR for Agricultural Landcover Classification. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 5342–5345. [Google Scholar]
- Kraatz, S.; Siqueira, P.; Kellndorfer, J.; Torbick, N.; Huang, X.; Cosh, M. Evaluating the Robustness of NISAR’s Cropland Product to Time of Observation, Observing Mode, and Dithering. Earth Space Sci. 2022, 9, e2022EA002366. [Google Scholar] [CrossRef]
- Rose, S.; Kraatz, S.; Kellndorfer, J.; Cosh, M.H.; Torbick, N.; Huang, X.; Siqueira, P. Evaluating NISAR’s Cropland Mapping Algorithm over the Conterminous United States Using Sentinel-1 Data. Remote Sens. Environ. 2021, 260, 112472. [Google Scholar] [CrossRef]
- Han, W.; Yang, Z.; Di, L.; Mueller, R. CropScape: A Web Service Based Application for Exploring and Disseminating US Conterminous Geospatial Cropland Data Products for Decision Support. Comput. Electron. Agric. 2012, 84, 111–123. [Google Scholar] [CrossRef]
- Walbridge, M.R.; Shafer, S.R. A Long-Term Agro-Ecosystem Research (LTAR) Network for Agriculture. In Proceedings of the Fourth Interagency Conference in the Watersheds: Observing, Studying, and Managing Change, Fairbanks, AK, USA, 26–30 September 2011; pp. 26–30. [Google Scholar]
- Hengl, T. Finding the Right Pixel Size. Comput. Geosci. 2006, 32, 1283–1298. [Google Scholar] [CrossRef]
- FarmLogic Systems. Available online: https://www.farmlogic.com/ (accessed on 1 May 2023).
- Sentinel-1 Observation Scenario. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-1/observation-scenario (accessed on 1 May 2023).
- Torbick, N.; Chowdhury, D.; Salas, W.; Qi, J. Monitoring Rice Agriculture across Myanmar Using Time Series Sentinel-1 Assisted by Landsat-8 and PALSAR-2. Remote Sens. 2017, 9, 119. [Google Scholar] [CrossRef]
- Gish, T.; Walthall, C.; Daughtry, C.; Dulaney, W.; Mccarty, G. Watershed-Scale Sensing of Subsurface Flow Pathways at OPE3 Site. In Proceedings of the First Interagency Conference on Research in the Watershed, Benson, AZ, USA, 27–30 October 2003; pp. 192–197. [Google Scholar]
- Yan, L.; Roy, D.P. Conterminous United States Crop Field Size Quantification from Multi-Temporal Landsat Data. Remote Sens. Environ. 2016, 172, 67–86. [Google Scholar] [CrossRef]
- Gao, F.; Jennewein, J.; Hively, W.D.; Soroka, A.; Thieme, A.; Bradley, D.; Keppler, J.; Mirsky, S.; Akumaga, U. Near Real-Time Detection of Winter Cover Crop Termination Using Harmonized Landsat and Sentinel-2 (HLS) to Support Ecosystem Assessment. Sci. Remote Sens. 2023, 7, 100073. [Google Scholar] [CrossRef]
- Kraatz, S.; Siqueira, P.; Rose, S. ISCE Docker Tools: Automated Radiometric Terrain Correction and Image Coregistration of UAVSAR MLC Data. In Proceedings of the IGARSS 2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020. [Google Scholar]
- Small, D. Flattening Gamma: Radiometric Terrain Correction for SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3081–3093. [Google Scholar] [CrossRef]
- Ulander, L.M.H. Radiometric Slope Correction of Synthetic-Aperture Radar Images. IEEE Trans. Geosci. Remote Sens. 1996, 34, 1115–1122. [Google Scholar] [CrossRef]
- Kraatz, S.; Bourgeau-Chavez, L.; Battaglia, M.; Poley, A.; Siqueira, P. Mapping and Scaling of in Situ Above Ground Biomass to Regional Extent with SAR in the Great Slave Region. Earth Space Sci. 2022, 9, e2022EA002431. [Google Scholar] [CrossRef]
- European Space Agency. Copernicus Global Digital Elevation Model, Distributed by OpenTopography. Available online: https://portal.opentopography.org/raster?opentopoID=OTSDEM.032021.4326.3 (accessed on 3 May 2023).
- Guth, P.L.; Geoffroy, T.M. LiDAR Point Cloud and ICESat-2 Evaluation of 1 Second Global Digital Elevation Models: Copernicus Wins. Trans. GIS 2021, 25, 2245–2261. [Google Scholar] [CrossRef]
- Lopes, A.; Touzi, R.; Nezry, E. Adaptive Speckle Filters and Scene Heterogeneity. IEEE Trans. Geosci. Remote Sens. 1990, 28, 992–1000. [Google Scholar] [CrossRef]
- Davitt, A.; Tesser, D.; Gamarro, H.; Anderson, M.; Knipper, K.; Xue, J.; Kustas, W.; Alsina, M.M.; Podest, E.; McDonald, K. The Complementary Uses of Sentinel-1A SAR and ECOSTRESS Datasets to Identify Vineyard Growth and Conditions: A Case Study in Sonoma County, California. Irrig. Sci. 2022, 40, 655–681. [Google Scholar] [CrossRef]
- Youden, W.J. Index for Rating Diagnostic Tests. Cancer 1950, 3, 32–35. [Google Scholar] [CrossRef]
- McHugh, M.L. Interrater Reliability: The Kappa Statistic. Biochem. Medica Biochem. Medica 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Kraatz, S.; Cosh, M.H.; Cho, E.; Torbick, N.; Huang, X.; Siqueira, P.R. Evaluating the Temporal Robustness of NISAR’s Cropland Mapping over a Stable and a Planting-Prevented Agricultural Region. In Proceedings of the AGU Fall Meeting 2022, Chicago, IL, USA, 12–16 December 2022; Volume 2022, p. GC23A-04. [Google Scholar]
- GDAL/OGR Contributors. GDAL/OGR Geospatial Data Abstraction Software Library. Open Source Geospatial Foundation. 2022. Available online: https://doi.org/10.5281/zenodo.5884351 (accessed on 1 August 2023).
- Lark, T.J.; Mueller, R.M.; Johnson, D.M.; Gibbs, H.K. Measuring Land-Use and Land-Cover Change Using the US Department of Agriculture’s Cropland Data Layer: Cautions and Recommendations. Int. J. Appl. Earth Obs. Geoinf. 2017, 62, 224–235. [Google Scholar]
- Pierdicca, N.; Davidson, M.; Chini, M.; Dierking, W.; Djavidnia, S.; Haarpaintner, J.; Hajduch, G.; Laurin, G.V.; Lavalle, M.; López-Martínez, C. The Copernicus L-Band SAR Mission ROSE-L (Radar Observing System for Europe) (Conference Presentation). In Proceedings of the Active and Passive Microwave Remote Sensing for Environmental Monitoring III, Strasbourg, France, 11–12 September 2019; SPIE: Bellingham, WA, USA, 2019; Volume 11154, p. 111540E. [Google Scholar]
- Ge, P.; Gokon, H.; Meguro, K. A Review on Synthetic Aperture Radar-Based Building Damage Assessment in Disasters. Remote Sens. Environ. 2020, 240, 111693. [Google Scholar] [CrossRef]
- Pottier, E.; Lee, J.-S. Application of the «H/A/Alpha» Polarimetric Decomposition Theorem for Unsupervised Classification of Fully Polarimetric SAR Data Based on the Wishart Distribution. In Proceedings of the SAR Workshop: CEOS Committee on Earth Observation Satellites, Toulouse, France, 26–29 October 1999; Volume 450, p. 335. [Google Scholar]
- Drouyer, S.; de Franchis, C. Parking occupancy estimation on sentinel-1 images. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 5, 821–828. [Google Scholar] [CrossRef]
- Washington Metropolitan Area Transit Authority. Available online: www.wmata.com (accessed on 25 August 2023).
Dataset/Tool | Institution | Avail. | Link |
---|---|---|---|
Farm Operations/shapefiles | USDA-BARC | open | https://doi.org/10.5281/zenodo.8087301 (accessed on 1 August 2023) |
Sentinel-1 radar data | ESA | open | https://asf.alaska.edu/ (accessed on 1 August 2023) |
Cropland Data Layer | USDA/NASS | open | https://nassgeodata.gmu.edu (accessed on 1 August 2023) |
InSAR Computing Env. | NASA | open | https://github.com/isce-framework/isce2 (accessed on 1 August 2023) |
Copernicus DEM | ESA | open | https://registry.opendata.aws/copernicus-dem/ (accessed on 1 August 2023) |
WMTA ridership | WMTA | open | www.wmata.com (accessed on 1 August 2023) |
Reference (BARC FarmLogic) | ||
---|---|---|
Model (CA) | Crop | Non-crop |
Crop | TP | FP |
Non-crop | FN | TN |
Year | OA (%) |
---|---|
2017 | 88.7 |
2018 | 85.3 |
2019 | 86.4 |
2020 | 87.6 |
2021 | 87.6 |
AVG | 87.1 |
Year | OAcrop,n=54 (%) | OAbuilt-up,n=26 (%) | OAforest,n=13 (%) | OAall,n=93 (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CDL | CA | CAns | CDL | CA | CAns | CDL | CA, CAns * | CDL | CA | CAns | |
2017 | 63.0 | 88.9 | 92.6 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 78.5 | 93.5 | 95.7 |
2018 | 63.0 | 100.0 | 100.0 | 100.0 | 92.3 | 92.3 | 100.0 | 100.0 | 78.5 | 97.8 | 97.8 |
2019 | 85.2 | 100.0 | 100.0 | 100.0 | 92.3 | 92.3 | 100.0 | 100.0 | 91.4 | 97.8 | 97.8 |
2020 | 85.2 | 88.9 | 88.9 | 100.0 | 92.3 | 96.2 | 100.0 | 100.0 | 91.4 | 91.4 | 92.5 |
2021 | 87.0 | 100.0 | 100.0 | 100.0 | 92.3 | 92.3 | 100.0 | 100.0 | 92.5 | 97.8 | 97.8 |
AVG | 76.7 | 95.6 | 96.3 | 100.0 | 93.8 | 94.6 | 100.0 | 100.0 | 86.5 | 95.7 | 96.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kraatz, S.; Lamb, B.T.; Hively, W.D.; Jennewein, J.S.; Gao, F.; Cosh, M.H.; Siqueira, P. Comparing NISAR (Using Sentinel-1), USDA/NASS CDL, and Ground Truth Crop/Non-Crop Areas in an Urban Agricultural Region. Sensors 2023, 23, 8595. https://doi.org/10.3390/s23208595
Kraatz S, Lamb BT, Hively WD, Jennewein JS, Gao F, Cosh MH, Siqueira P. Comparing NISAR (Using Sentinel-1), USDA/NASS CDL, and Ground Truth Crop/Non-Crop Areas in an Urban Agricultural Region. Sensors. 2023; 23(20):8595. https://doi.org/10.3390/s23208595
Chicago/Turabian StyleKraatz, Simon, Brian T. Lamb, W. Dean Hively, Jyoti S. Jennewein, Feng Gao, Michael H. Cosh, and Paul Siqueira. 2023. "Comparing NISAR (Using Sentinel-1), USDA/NASS CDL, and Ground Truth Crop/Non-Crop Areas in an Urban Agricultural Region" Sensors 23, no. 20: 8595. https://doi.org/10.3390/s23208595
APA StyleKraatz, S., Lamb, B. T., Hively, W. D., Jennewein, J. S., Gao, F., Cosh, M. H., & Siqueira, P. (2023). Comparing NISAR (Using Sentinel-1), USDA/NASS CDL, and Ground Truth Crop/Non-Crop Areas in an Urban Agricultural Region. Sensors, 23(20), 8595. https://doi.org/10.3390/s23208595