An Edge Transfer Learning Approach for Calibrating Soil Electrical Conductivity Sensors
Abstract
:1. Introduction
2. Related Studies
2.1. EC Sensors
2.2. Sensor Calibration
3. The SensorTalk3 Approach
3.1. The SensorTalk3 Architecture
3.2. The Datasets and Data Preprocessing
4. The AI Models
5. Performance Evaluation
5.1. Accuracy of Calibration
5.2. Time and Space Complexities of the Edge-Based IoTtalk Engine
5.3. Calibration Frequency
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Vuran, M.C.; Salam, A.; Wong, R.; Irmak, S. Internet of underground things in precision agriculture: Architecture and technology aspects. Ad Hoc Netw. 2018, 81, 160–173. [Google Scholar] [CrossRef]
- Sridharani, J.; Chowdary, S.; Nikhil, K. Smart farming: The IoT based future agriculture. In Proceedings of the International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 20–22 January 2022; pp. 150–155. [Google Scholar]
- Chen, W.-L.; Lin, Y.-B.; Lin, Y.-W.; Chen, R.; Liao, J.-K.; Ng, F.-L.; Chan, Y.-Y.; Liu, Y.-C.; Wang, C.-C.; Chiu, C.-H.; et al. AgriTalk: IoT for Precision Soil Farming of Turmeric Cultivation. IEEE Internet Things J. 2019, 6, 5209–5223. [Google Scholar] [CrossRef]
- Yang, A.; Wang, P.; Yang, H. In Situ Blind Calibration of Sensor Networks for Infrastructure Monitoring. IEEE Sens. J. 2021, 21, 24274–24284. [Google Scholar] [CrossRef]
- Joshi, V.R.; Srinivasan, K.; Manivannan, S.S. Intelligent agricultural farming system using internet of things. In Proceedings of the IEEE International Conference on Consumer Electronics—Taiwan (ICCE-TW), Yilan, Taiwan, 20–22 May 2019; pp. 1–2. [Google Scholar]
- Lin, Y.-W.; Lin, Y.-B.; Hung, H.-N. CalibrationTalk: A Farming Sensor Failure Detection and Calibration Technique. IEEE Internet Things J. 2021, 8, 6893–6903. [Google Scholar] [CrossRef]
- Lin, Y.-B.; Lin, Y.-W.; Lin, J.-Y.; Hung, H.-N. SensorTalk: An IoT Device Failure Detection and Calibration Mechanism for Smart Farming. Sensors 2019, 19, 4788–4807. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-B.; Lin, Y.-W. SensorTalk: Extending the Life for Redundant Electrical Conductivity Sensor. IEEE Internet Things J. 2022, 9, 16619–16630. [Google Scholar] [CrossRef]
- Murata. Soil Sensor. 2023. Available online: https://www.murata.com/en-global/products/sensor/soil (accessed on 22 October 2023).
- Yang, G.; Rezaee, H.; Parisini, T. Sensor Redundancy for Robustness in Nonlinear State Estimation. In Proceedings of the 2019 IEEE 58th Conference on Decision and Control (CDC), Nice, France, 11–13 December 2019; pp. 3865–3870. [Google Scholar]
- Li, B.; Wang, H.; Mu, L.; Shi, Z.; Du, B. A configuration design method for a redundant inertial navigation system based on diagnosability analysis. Meas. Sci. Technol. 2020, 32, 25111. [Google Scholar] [CrossRef]
- Murata. Soil and Water Environment Sensor Specification Sheet; Technical Report JEDS18S-0003; Murata: Kyoto, Japan, 2021. [Google Scholar]
- Winkler, N.P.; Neumann, P.P.; Schaffernicht, E.; Lilienthal, A.J. Using redundancy in a sensor network to compensate sensor failures. In Proceedings of the IEEE Sensors, Sydney, Australia, 31 October–3 November 2021; pp. 1–4. [Google Scholar]
- Hilhorst, M.A. A pore water conductivity sensor. Soil Sci. Soc. Am. J. 2000, 64, 1922–1925. [Google Scholar] [CrossRef]
- Futagawa, M.; Ban, Y.; Kawashima, K.; Sawada, K. On-site monitoring of soil condition for precision agriculture by using multimodal microchip integrated with EC and temperature sensors. In Proceedings of the International Conference on Solid State Sensors and Actuators (TRANSDUCERS), Barcelona, Spain, 16–20 June 2013; pp. 112–115. [Google Scholar]
- Ou, I.-C.; Tsai, K.-J.; Chu, Y.-H.; Liao, Y.-T. Self-Sustaining Soil Electrical Conductance Measurement Using a DC–DC Power Converter. IEEE Sens. J. 2021, 19, 10560–10567. [Google Scholar] [CrossRef]
- Concas, F.; Mineraud, J.; Lagerspetz, E.; Varjonen, S.; Liu, X.; Puolamaki, K.; Nurmi, P.; Tarkoma, S. Low-Cost Outdoor Air Quality Monitoring and Sensor Calibration: A Survey and Critical Analysis. ACM Trans. Sens. Netw. 2021, 17, 1–44. [Google Scholar] [CrossRef]
- Zhang, S.; Tian, F.; Covington, J.A.; Li, H.; Zhao, L.; Liu, R.; Qian, J.; Liu, B. A Universal Calibration Method for Electronic Nose Based on Projection on to Convex Sets. IEEE Trans. Instrum. Meas. 2021, 70, 2516012. [Google Scholar] [CrossRef]
- Ye, H.; Li, X.; Dong, K. Crowdsensing based barometer sensor calibration using smartphones. In Proceedings of the 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation, Guangzhou, China, 8–12 October 2018; pp. 1555–1562. [Google Scholar]
- Thanh, O.V.; Puigt, M.; Yahaya, F.; Delmaire, G.; Roussel, G. In situ calibration of cross-sensitive sensors in mobile sensor arrays using fast informed non-negative matrix factorization. In Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 3515–3519. [Google Scholar]
- Kim, S.; Sung, H.; Kim, S.; Je, M.; Kim, J.-H. ML-based humidity and temperature calibration system for heterogeneous MOx sensor array in ppm-level BTEX monitoring. In Proceedings of the 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Republic of Korea, 22–28 May 2021; pp. 1–5. [Google Scholar]
- Robin, Y.; Goodarzi, P.; Baur, T.; Schultealbert, C.; Schutze, A.; Schneider, T. Machine learning based calibration time reduction for gas sensors in temperature cycled operation. In Proceedings of the 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Glasgow, UK, 17–20 May 2021. [Google Scholar]
- Veiga, T.; Ljunggren, E.; Bach, K.; Akselsen, S. Blind calibration of air quality wireless sensor networks using deep neural networks. In Proceedings of the 2021 IEEE International Conference on Omni-Layer Intelligent Systems (COINS), Barcelona, Spain, 23–25 August 2021; pp. 1–6. [Google Scholar]
- Jha, S.K.; Kumar, M.; Arora, V.; Tripathi, S.N.; Motghare, V.M.; Shingare, A.A.; Rajput, K.A.; Kamble, S. Domain adaptation based deep calibration of low-cost PM2.5 sensors. IEEE Sens. J. 2021, 21, 25941–25949. [Google Scholar] [CrossRef]
- Motie, J.B.; Aghkhani, M.H.; Rohani, A.; Lakzian, A. A soft-computing approach to estimate soil electrical conductivity. Biosyst. Eng. 2021, 205, 105–120. [Google Scholar] [CrossRef]
- Lin, Y.-B.; Lin, Y.-W.; Huang, C.-M.; Chih, C.-Y.; Lin, P. IoTtalk: A Management Platform for Reconfigurable Sensor Devices. IEEE Internet Things J. 2017, 4, 1552–1562. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Sheng, C.; Yu, H. An optimized prediction algorithm based on XGBoost. In Proceedings of the International Conference on Networking and Network Applications (NaNA), Urumqi, China, 3–5 December 2022; pp. 1–6. [Google Scholar]
- Ho, T.K. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995; pp. 278–282. [Google Scholar]
- More, A.S.; Rana, D.P. Review of random forest classification techniques to resolve data imbalance. In Proceedings of the International Conference on Intelligent Systems and Information Management (ICISIM), Aurangabad, India, 5–6 October 2017; pp. 72–78. [Google Scholar]
- Rokach, L. Ensemble-based Classifiers. Artif. Intell. Rev. 2010, 33, 1–39. [Google Scholar] [CrossRef]
- Chang, Z.; Liu, S.; Xiong, X.; Cai, Z.; Tu, G. A Survey of Recent Advances in Edge-Computing-Powered Artificial Intelligence of Things. IEEE Internet Things J. 2021, 8, 13849–13875. [Google Scholar] [CrossRef]
- Winbond. W77Q32JW/W77Q16JW 1.8V 32M-BIT/16M-BIT Secure Serial NOR Flash Memory with Dual/Quad SPI, QPI & DTR. Technical Report W77QDS0100 Rev. B. Winbond, 2021. [Google Scholar]
- Winbond. Winbond’s W77Q TrustME® for Raspberry Pi4 Setup Guide; Winbond: Taichung City, Taiwan, 2021. [Google Scholar]
Loss Function | MAPE | |
---|---|---|
XGBOOST | Random Forest | |
MSE | 1.714% | 2.981% |
RMSLE | 54.701% | 3.180% |
Dataset. | MAPE | ||||
---|---|---|---|---|---|
Original | Lookup Table | XGBOOST | Random Forest | Ensemble | |
Dataset3 | 11.159% | 5.690% | 3.203% | 3.453% | 3.187% |
Dataset4 | 7.792% | 2.393% | 1.818% | 1.861% | 1.738% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-W.; Lin, Y.-B.; Chang, T.C.-Y.; Lu, B.-X. An Edge Transfer Learning Approach for Calibrating Soil Electrical Conductivity Sensors. Sensors 2023, 23, 8710. https://doi.org/10.3390/s23218710
Lin Y-W, Lin Y-B, Chang TC-Y, Lu B-X. An Edge Transfer Learning Approach for Calibrating Soil Electrical Conductivity Sensors. Sensors. 2023; 23(21):8710. https://doi.org/10.3390/s23218710
Chicago/Turabian StyleLin, Yun-Wei, Yi-Bing Lin, Ted C.-Y. Chang, and Bo-Xun Lu. 2023. "An Edge Transfer Learning Approach for Calibrating Soil Electrical Conductivity Sensors" Sensors 23, no. 21: 8710. https://doi.org/10.3390/s23218710
APA StyleLin, Y. -W., Lin, Y. -B., Chang, T. C. -Y., & Lu, B. -X. (2023). An Edge Transfer Learning Approach for Calibrating Soil Electrical Conductivity Sensors. Sensors, 23(21), 8710. https://doi.org/10.3390/s23218710