Daily Soil Moisture Retrieval by Fusing CYGNSS and Multi-Source Auxiliary Data Using Machine Learning Methods
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.1.1. CYGNSS
2.1.2. SMAP
2.1.3. ERA5-Land
2.1.4. In-Situ SM Data
2.1.5. Auxiliary Data
2.2. Methodology
2.2.1. Normalized CYGNSS SR Retrieval
2.2.2. SM Retrieval Model Construction
- (1)
- The area is divided into six land types according to the GlobeLand30 data. All auxiliary data are resampled to 9 km. The feature data of the same land types are then extracted to construct multiple models.
- (2)
- Multiple models of six different land types are built to extract SM features. Then, the feature fusion layer is constructed to connect all nodes. The optimal structure of the model is determined through repeated testing.
- (3)
- The dataset is divided into a training set and a testing set to verify the accuracy of the model. The training set is used to adjust the variables of the GBRT model, and the testing set is used to test the performance. The fusion model process is shown in Figure 3.
2.2.3. Error Metrics
3. Results
3.1. Quality Control of Auxiliary Variables
3.2. Comparison with SMAP SM
3.3. Comparison of with ERA5-Land SM
3.4. Comparison with In Situ SM
3.5. Comparisons with the GBRT Model without Land Cover Classification
4. Discussion
5. Conclusions
- (1)
- The method proposed in this study can retrieve SM with high accuracy, with R= 0.765 m3m−3, and ubRMSE = 0.054 m3m−3 compared to SMAP SM, and R = 0.653 and ubRMSE = 0.057 m3 m−3 compared to ERA5-Land SM, and with R = 0.691, and RMSE = 0.057 m3m−3 compared to the in situ SM.
- (2)
- The accuracy of the proposed model is improved compared to the model without land cover classification, with the R-value improved by ~9.40% and the ubRMSE value decreased by ~8.62%.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glenn, E.P.; Huete, A.R.; Nagler, P.L.; Nelson, S.G. Relationship Between Remotely-sensed Vegetation Indices, Canopy Attributes and Plant Physiological Processes: What Vegetation Indices Can and Cannot Tell Us About the Landscape. Sensors 2008, 8, 2136–2160. [Google Scholar]
- Verstraeten, W.W.; Veroustraete, F.; Feyen, J. Assessment of Evapotranspiration and Soil Moisture Content across Different Scales of Observation. Sensors 2008, 8, 70–117. [Google Scholar]
- Chan, S.K.; Bindlish, R.; O’Neill, P.; Jackson, T.; Kerr, Y. Development and assessment of the smap enhanced passive soil moisture product. Remote Sens. Environ. 2018, 204, 2539–2542. [Google Scholar]
- Portal, G.; Vall-Llossera, M.; Piles, M.; Camps, A.; Chaparro, D.; Pablos, M.; Rossato, L. A spatially consistent downscaling approach for SMOS using an adaptive moving window. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1883–1894. [Google Scholar]
- Kornelsen, K.C.; Coulibaly, P. Advances in soil moisture retrieval from synthetic aperture radar and hydrological applications. J. Hydrol. 2013, 476, 460–489. [Google Scholar]
- Clarizia, M.P.; Pierdicca, N.; Costantini, F.; Floury, N. Analysis of CYGNSS data for soil moisture retrieval. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2227–2235. [Google Scholar]
- Chew, C.; Shah, R.; Zuffada, C.; Hajj, G.; Masters, D.; Mannucci, A.J. Demonstrating soil moisture remote sensing with observations from the UK TechDemoSat-1 satellite mission. Geophys. Res. Lett. 2016, 43, 3317–3324. [Google Scholar]
- Chew, C.; Small, E. Description of the UCAR/CU soil moisture product. Remote Sens. 2020, 12, 1558. [Google Scholar]
- Al-Khaldi, M.M.; Johnson, J.T.; O’Brien, A.J.; Balenzano, A.; Mattia, F. Time-series retrieval of soil moisture using CYGNSS. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4322–4331. [Google Scholar]
- Yang, T.; Wan, W.; Sun, Z.; Liu, B.; Li, S.; Chen, X. Comprehensive evaluation of using TechDemoSat-1 and CYGNSS data to estimate soil moisture over mainland China. Remote Sens. 2020, 12, 1699. [Google Scholar]
- Senyurek, V.; Lei, F.; Boyd, D.; Gurbuz, A.C.; Kurum, M.; Moorhead, R. Evaluations of ML-based CYGNSS soil moisture estimates against SMAP observations. Remote Sens. 2020, 12, 3503. [Google Scholar]
- Jia, Y.; Jin, S.; Chen, H.; Yan, Q.; Savi, P.; Jin, Y.; Yuan, Y. Temporal-spatial soil moisture estimation from CYGNSS using machine learning regression with a preclassification approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 4879–4893. [Google Scholar]
- Yang, T.; Wan, W.; Wang, J.; Liu, B.; Sun, Z. A Physics-Based Algorithm to Couple CYGNSS Surface Reflectivity and SMAP Brightness Temperature Estimates for Accurate Soil Moisture Retrieval. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4409715. [Google Scholar]
- Yan, Q.; Huang, W.; Jin, S.; Jia, Y. Pan-tropical soil moisture mapping based on a three-layer model from CYGNSS GNSS-R data. Remote Sens. Environ. 2020, 247, 111944. [Google Scholar]
- Lei, F.; Senyurek, V.; Kurum, M.; Gurbuz, A.C.; Boyd, D.; Moorhead, R.; Crow, W.T.; Eroglu, O. Quasi-global machine learning-based soil moisture estimates at high spatio-temporal scales using CYGNSS and SMAP observations. Remote Sens. Environ. 2022, 276, 113041. [Google Scholar]
- Eroglu, O.; Kurum, M.; Boyd, D.; Gurbuz, A.C. High spatio-temporal resolution CYGNSS soil moisture estimates using artificial neural networks. Remote Sens. 2019, 11, 2272. [Google Scholar]
- Xu, H.; Yuan, Q.; Li, T.; Shen, H.; Zhang, L.; Jiang, H. Quality improvement of satellite soil moisture products by fusing with in-situ measurements and GNSS-R estimates in the western continental US. Remote Sens. 2018, 10, 1351. [Google Scholar]
- Chan, S.K.; Bindlish, R.; O’Neill, P.E.; Njoku, E.; Jackson, T.; Colliander, A.; Chen, F.; Burgin, M.; Dunbar, S.; Piepmeier, J.; et al. Assessment of the SMAP passive soil moisture product. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4994–5007. [Google Scholar]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar]
- Holzman, M.E.; Rivas, R.; Piccolo, M.C. Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index. Int. J. Appl. Earth Obs. 2014, 28, 181–192. [Google Scholar]
- Zhang, D.; Zhou, G. Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review. Sensors 2016, 16, 1308. [Google Scholar] [PubMed]
- Koster, R.D.; Dirmeyer, P.A.; Guo, Z.; Bonan, G.; Chan, E.; Cox, P.; Gordon, C.T.; Kanae, S.; Kowalczyk, E.; Lawrence, D.; et al. Regions of strong coupling between soil moisture and precipitation. Science 2004, 305, 1138–1140. [Google Scholar]
- Chen, S.; She, D.; Zhang, L.; Guo, M.; Liu, X. Spatial downscaling methods of soil moisture based on multisource remote sensing data and its application. Water 2019, 11, 1401. [Google Scholar]
- Liang, S. Narrowband to broadband conversions of land surface albedo I algorithms. Remote Sens. Environ. 2001, 76, 213–238. [Google Scholar]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. Isprs J. Photogramm. 2015, 103, 7–27. [Google Scholar]
- Wang, J.; Yang, T.; Zhu, K.; Shao, C.; Zhu, W.; Hou, G.; Sun, Z. A novel retrieval model for soil salinity from CYGNSS: Algorithm and test in the Yellow River Delta. Geoderma 2023, 432, 116417. [Google Scholar]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar]
Data | Temporal Resolution | Spatial Resolution |
---|---|---|
CYGNSS L1a | Daily | ~0.5 km × 3.5 km (coherent) |
CLDAS LST | Daily | 0.625° |
MCD43A3 reflectance | 16 days | 500 m |
GPM IMERG Late Precipitation L3 precipitation | Daily | 0.1° |
ASTER surface elevation | / | 90 m |
SMAP surface roughness | Daily | 9 km |
SMAP VWC | Daily | 9 km |
Variables | Feature Importance |
---|---|
CYGNSS SRn | 0.385 |
VWC | 0.162 |
Slope | 0.063 |
Surface roughness | 0.026 |
Precipitation | 0.130 |
Surface albedo | 0.071 |
LST | 0.143 |
Elevation | 0.011 |
Aspect | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.; Wang, J.; Sun, Z.; Li, S. Daily Soil Moisture Retrieval by Fusing CYGNSS and Multi-Source Auxiliary Data Using Machine Learning Methods. Sensors 2023, 23, 9066. https://doi.org/10.3390/s23229066
Yang T, Wang J, Sun Z, Li S. Daily Soil Moisture Retrieval by Fusing CYGNSS and Multi-Source Auxiliary Data Using Machine Learning Methods. Sensors. 2023; 23(22):9066. https://doi.org/10.3390/s23229066
Chicago/Turabian StyleYang, Ting, Jundong Wang, Zhigang Sun, and Sen Li. 2023. "Daily Soil Moisture Retrieval by Fusing CYGNSS and Multi-Source Auxiliary Data Using Machine Learning Methods" Sensors 23, no. 22: 9066. https://doi.org/10.3390/s23229066
APA StyleYang, T., Wang, J., Sun, Z., & Li, S. (2023). Daily Soil Moisture Retrieval by Fusing CYGNSS and Multi-Source Auxiliary Data Using Machine Learning Methods. Sensors, 23(22), 9066. https://doi.org/10.3390/s23229066